

Lecture Notes in Computer Science 3706
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hugo Fuks Stephan Lukosch
Ana Carolina Salgado (Eds.)

Groupware: Design,
Implementation,
and Use

11th International Workshop, CRIWG 2005
Porto de Galinhas, Brazil, September 25-29, 2005
Proceedings

13

Volume Editors

Hugo Fuks
Catholic University of Rio de Janeiro, Software Engineering Laboratory
R. Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, Brazil
E-mail: hugo@inf.puc-rio.br

Stephan Lukosch
FernUniversität in Hagen, Computer Science Department
Universitätsstr. 1, 58084 Hagen, Germany
E-mail: stephan.lukosch@fernuni-hagen.de

Ana Carolina Salgado
Federal University of Pernambuco, Center for Informatics
Av. Prof. Luiz Freire S/N, Cidade Universitária, 50740-540 Recife-PE, Brazil
E-mail: acs@cin.ufpe.br

Library of Congress Control Number: 2005932312

CR Subject Classification (1998): H.5.2, H.5.3, H.5, K.3.1, K.4.3, C.2.4

ISSN 0302-9743
ISBN-10 3-540-29110-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29110-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11560296 06/3142 5 4 3 2 1 0

Preface

This volume constitutes the proceedings of the 11th International Workshop
on Groupware (CRIWG 2005). The conference was held in Porto de Galinhas
(Recife), Brazil. The previous ten CRIWG workshops were organized in Lisbon,
Portugal (1995), Puerto Varas, Chile (1996), El Escorial, Spain (1997), Buzios,
Brazil (1998), Cancun, Mexico (1999), Madeira, Portugal (2000), Darmstadt,
Germany (2001), La Serena, Chile (2002), Autrans, France (2003), and San Car-
los, Costa Rica (2004). CRIWG workshops follow a simple recipe for success:
good papers, a relatively small number of attendees, extensive time for lively
and constructive discussions, and a high level of cooperation both within and
between paper sessions. CRIWG 2005 continued this tradition.

This 11th CRIWG exemplified the continuing interest in the groupware re-
search area. Groupware researchers from 16 different countries submitted a total
of 67 papers. Each of the 67 papers was reviewed by at least three members of an
internationally renowned Program Committee, using a double-blind reviewing
process. Based on the reviewers’ recommendations 29 papers were finally ac-
cepted: 16 long papers presenting mature work, and 13 short papers describing
work in progress. The accepted papers were grouped into 8 themes that represent
current areas of interest in groupware research: groupware development, collab-
orative applications, workflow management, knowledge management, computer-
supported collaborative learning, group decision support systems, mobile collab-
orative work, and work modeling in CSCW. In addition, we were pleased to have
Gerry Stahl from Drexel University in Philadelphia, USA, a renowned specialist
in CSCL, as keynote speaker.

CRIWG 2005 would not have been possible without the work and support
of a great number of people. First of all we thank all members of the Program
Committee for their valuable reviews of the papers. We are grateful for the
advice and support provided by the CRIWG Steering Committee. We extend
a special acknowledgment to our sponsoring organizations: CIN/UFPE (Centro
de Informática da Universidade Federal de Pernambuco), FACEPE (Fundação
de Amparo à Ciência e Tecnologia do Estado de Pernambuco), and CAPES
(Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior), all in Brazil.

Last, but certainly not least, we thank the attendees for their interest in
CRIWG 2005, and hope they had an enriching experience at the conference.

September 2005 Hugo Fuks
Stephan Lukosch

Ana Carolina Salgado

Conference Organization

Program Committee Chairs

Hugo Fuks, Catholic University of Rio de Janeiro, Brazil
Stephan Lukosch, FernUniversität in Hagen, Germany

Program Committee

Pedro Antunes, Universidade de Lisboa, Portugal
Jaco Appelman, Delft University of Technology, The Netherlands
Nelson Baloian, Universidad de Chile, Chile
Marcos Borges, Federal University of Rio de Janeiro, Brazil
Patrick Brézillon, Université Paris 6, France
César A. Collazos, Systems Dept., Universidad del Cauca, Colombia
Bertrand David, Ecole Centrale de Lyon, France
Gert-Jan de Vreede, University of Nebraska at Omaha, USA
Dominique Decouchant, LSR-IMAG, Grenoble, France
Yannis Dimitriadis, University of Valladolid, Spain
Henrique João L. Domingos, Universidade Nova de Lisboa, Portugal
Thomas Erickson, IBM T.J. Watson Research Center, USA
Cléver Farias, Catholic University of Santos, Brazil
Jesus Favela, CICESE, Mexico
Christine Ferraris, Université de Savoie, France
Werner Geyer, IBM T.J. Watson Research, Cambridge, USA
Luis A. Guerrero, Universidad de Chile, Chile
Jörg M. Haake, FernUniversität in Hagen, Germany
Andreas Harrer, University of Duisburg-Essen, Germany
H. Ulrich Hoppe, University of Duisburg-Essen, Germany
Sten Ludvigsen, University of Oslo, Norway
Gloria Mark, University of California at Irvine, USA
Alberto L. Moran, Facultad de Ciencias — UABC, Mexico
Jose A. Pino, Universidad de Chile, Chile
Jean-Charles Pomerol, Université Pierre et Marie Curie, Paris, France
Nuno Preguiça, Universidade Nova de Lisboa, Portugal
Alberto Raposo, Catholic University of Rio de Janeiro, Brazil
Nicolas Roussel, Université Paris-Sud, France
Flavia Maria Santoro, UNIRIO, Brazil
Till Schümmer, FernUniversität in Hagen, Germany
Carla Simone, University of Milan, Italy
Robert Slagter, Telematica Instituut, The Netherlands

VIII Organization

José Valdeni de Lima, Universidade Federal do Rio Grande do Sul, Brazil
Aurora Vizcáıno Barceló, Universidad de Castilla-La Mancha, Spain
Jürgen Vogel, European Media Laboratory (EML) GmbH, Germany
Jacques Wainer, State University of Campinas, Brazil
Martin Wessner, Fraunhofer IPSI, Germany
Volker Wulf, Fraunhofer FIT, Germany

Doctoral Colloquium Chair

Gert-Jan de Vreede, University of Nebraska at Omaha, USA

Organization Committee Chair

Ana Carolina Salgado, Federal University of Pernambuco, Brazil

Organization Committee

Patricia Tedesco, Federal University of Pernambuco, Brazil
Carlos Ferraz, Federal University of Pernambuco, Brazil
Nelson Rosa, Federal University of Pernambuco, Brazil
Vaninha Vieira, Federal University of Pernambuco, Brazil

Sponsoring Institutions

Centro de Informática da Universidade Federal de Pernambuco, Brazil
Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, Brazil
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior, Brazil

Table of Contents

Opening Keynote

Groups, Group Cognition and Groupware
Gerry Stahl . 1

Groupware Development

A Framework for Prototyping Collaborative Virtual Environments
Clinton Jeffery, Akshay Dabholkar, Kosta Tachtevrenidis,
Yosep Kim . 17

Adaptive Distribution Support for Co-authored Documents on the Web
Sonia Mendoza, Dominique Decouchant, Alberto L. Morán,
Ana Maŕıa Mart́ınez Enŕıquez, Jesus Favela . 33

Agilo: A Highly Flexible Groupware Framework
Axel Guicking, Peter Tandler, Paris Avgeriou . 49

Autonomous and Self-sufficient Groups: Ad Hoc Collaborative
Environments

Joan Manuel Marquès, Leandro Navarro . 57

Empowering End-Users: A Pattern-Centered Groupware Development
Process

Till Schümmer, Stephan Lukosch, Robert Slagter 73

Integrating Synchronous and Asynchronous Interactions in Groupware
Applications

Nuno Preguiça, J. Legatheaux Martins, Henrique Domingos,
Sérgio Duarte . 89

Collaborative Applications

An Architectural Model for Component Groupware
Cléver R.G. de Farias, Carlos E. Gonçalves, Marta C. Rosatelli,
Lúıs Ferreira Pires, Marten van Sinderen . 105

An Architecture for Collaborative Geomodeling
Luciano P. Reis, Alberto B. Raposo, Jean-Claude Paul,
Fabien Bosquet . 121

X Table of Contents

Remote Control Point Motion Prediction in Internet-Based Real-Time
Collaborative Graphics Editing Systems

Bo Jiang, Jiajun Bu, Chun Chen, Jianxv Yang . 137

Synchronization Contexts as a Means to Support Collaborative
Modeling

Niels Pinkwart . 145

Tailoring Infrastructures: Supporting Cooperative Work with
Configurable Email Filters

Volkmar Pipek, Markus Won, Roman Englert, Volker Wulf 153

Workflow Management

A Collaborative Framework for Unexpected Exception Handling
Hernâni Mourão, Pedro Antunes . 168

A Workflow Mining Method Through Model Rewriting
Jacques Wainer, Kwanghoon Kim, Clarence A. Ellis 184

Design of an Object-Oriented Workflow Management System with
Reusable and Fine-Grained Components

Gwan-Hwan Hwang, Yung-Chuan Lee, Sheng-Ho Chang 192

Modeling the Behavior of Dispatching Rules in Workflow Systems:
A Statistical Approach

Gregório Baggio Tramontina, Jacques Wainer . 208

Knowledge Management

Collective Knowledge Recall: Benefits and Drawbacks
Naiana Carminatti, Marcos R.S. Borges, José Orlando Gomes 216

Developing Shared Context Within Group Stories
Flávia Maria Santoro, Patrick Brézillon . 232

Patterns of Collaboration and Non-collaboration Among Physicians
Claudia Barsotini, Jacques Wainer . 248

Shared Knowledge: The Result of Negotiation in Non-hierarchical
Environments

Oriel Herrera, David A. Fuller . 255

Table of Contents XI

Computer Supported Collaborative Learning

A Mediation Model for Large Group Collaborative Teaching
Maŕıa Ester Lagos, Miguel Nussbaum, Francisca Capponi 263

Analyzing the Organization of Collaborative Math Problem-Solving in
Online Chats Using Statistics and Conversation Analysis

Alan Zemel, Fatos Xhafa, Gerry Stahl . 271

Collaboration for Learning Language Skills
Luis A. Guerrero, Milko Madariaga, Cesar Collazos, José A. Pino,
Sergio Ochoa . 284

Group Decision Support Systems

Collaborative IS Decision-Making: Analyzing Decision Process
Characteristics and Technology Support

Bjørn Erik Munkvold, Kristin Eim, Øyvind Husby 292

Software Requirements Negotiation Using the Software Quality
Function Deployment

João Ramires, Pedro Antunes, Ana Resṕıcio . 308

The Design and Field Evaluation of a Repeatable Collaborative
Software Code Inspection Process

Pushpa G. Koneri, Gert-Jan de Vreede, Douglas L. Dean,
Ann L. Fruhling, Peter Wolcott . 325

Mobile Collaborative Work

Handheld-Based Electronic Meeting Support
Gustavo Zurita, Nelson Baloian . 341

Sharing Information Resources in Mobile Ad-hoc Networks
Andrés Neyem, Sergio F. Ochoa, José A. Pino, Luis A. Guerrero 351

Work Modeling in CSCW

Towards a Model of Cooperation
Adriana S. Vivacqua, Jean-Paul Barthès, Jano Moreira de Souza 359

XII Table of Contents

Towards an Ontology for Context Representation in Groupware
Vaninha Vieira, Patŕıcia Tedesco, Ana Carolina Salgado 367

Author Index . 377

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 1 – 16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Groups, Group Cognition and Groupware

Gerry Stahl

Drexel University, Philadelphia, USA
Gerry.Stahl@drexel.edu

http://www.cis.drexel.edu/faculty/gerry

Abstract. More than we realize it, knowledge is often constructed through
interactions among people in small groups. The Internet, by allowing people to
communicate globally in limitless combinations, has opened enormous
opportunities for the creation of knowledge and understanding. A major barrier
today is the poverty of adequate groupware. To design more powerful software
that can facilitate the building of collaborative knowledge, we need to better
understand the nature of group cognition—the processes whereby ideas are
developed by small groups. We need to analyze interaction at both the
individual and the group unit of analysis in order to understand the variety of
processes that groupware should be supporting. This paper will look closely at
an empirical example of knowledge being constructed by a small group and
suggest implications for groupware design.

1 Individual Learning in Groups

Groupware is software that is specifically designed to support the work of groups.
Most software in the past, in contrast, has been designed to support the work of

individuals. The most popular applications—such as word processors, Internet
browsers and spreadsheets—are structured for use by one individual at a time.
Software for communication among people—like an email program—assumes a
model of communication as transmission of messages from one person to other
individuals. Building on these examples, one could design groupware to support
groups conceived of as sets of individuals. Such software would allow individuals to
express their mental ideas, transmit these expressions to other people, receive
expressions transmitted from other people and make sense of received messages as
expressions of the ideas in the heads of the other people [as in 1]. Possibilities for
improving these designs might be conceived in terms of “increasing the bandwidth”
of the transmissions, possibly taking face-to-face communication as the “gold
standard” of communication with a wide bandwidth of many channels (words,
intonation, gaze, facial expression, gesture, body language).

Until recently, most research about groups has focused on the individual people in
the group as the cognitive agents. For instance, research on cooperative learning in the
1970s [still in 2], assumed that knowledge resided in the individuals, and that group
interaction was most useful as a way of transferring knowledge from one individual to
another or as a way of motivating individuals to perform better. Educational research

2 G. Stahl

on groups typically measured learning in terms of individual test outcomes and tried
to study what is going on in the minds of the individuals through surveys, interviews
and talk-aloud protocols. Similarly, research in social psychology about small groups
conceptualized the groups as sets of rationally calculating individuals seeking to
maximize their own advantages. This broad tradition looks to the individual as the
unit of analysis, both to understand what takes place in group behavior and to measure
quantitative learning or knowledge-building outcomes.

In the 1990s, the individualistic approach was thoroughly critiqued by theories of
situated cognition [3], distributed cognition [4], socio-cultural activity theory [5] and
ethnomethodology [6], building on the philosophies of phenomenology [7], mediation
[8] and dialog [9]. These new approaches rejected the view that cognition or the
construction of knowledge took place exclusively in the isolated minds of individuals,
and showed how it emerged from concrete situations and interpersonal interactions.
One consequence that could be drawn from this would be to analyze cognition at the
small-group unit of analysis, as in many cases a product of social interaction within
the context of culturally-defined rules or habits of behavior.

An alternative approach to designing groupware based on a group conception of
cognition would provide functionality to support the working of a group as an organic
whole, rather that just supporting the group members as individuals and treating the
group as the sum of its parts. In the past, a number of researchers have tried to
develop groupware that supports the functioning of the group itself, such as the
formation of groups [10], intertwining of perspectives [11] and negotiation of group
decisions [12; 13].

Here I would like to further develop the approach focused on the group that I
presented in Group Cognition [14] and that is being investigated in the Virtual Math
Teams (VMT) project at the Math Forum at Drexel University. In part I of the book, I
present my own attempts to design software to support small-group interactions
(building, of course, on previous work by others), and conclude that we need to better
understand how groups work before we can effectively design groupware. In part II of
the book, I then discuss how to analyze the methods that are used in groups to
construct meaning and knowledge. Then I develop a concept of group cognition in
part III to talk about what takes place at the group unit of analysis.

In this paper, I report on our preliminary analysis in VMT of a group of students
working on a set of math problems in an online chat room. We are interested in seeing
how they work together using a minimal system of computer support in order to see
what forms of interaction might be supported by groupware with special functionality
designed to increase the effectiveness of the collaboration.

In order to capture both the individual and the group contributions to discourse and
to compare their results, we recently arranged an experiment with a combination of
individual and group work. It consists of an individual phase where the knowledge of
the individuals can be objectively assessed, followed by a group phase in which the
references and proposals can be analyzed at both the individual and the group units of
analysis. By seeing what the individuals knew before they participated in the group
phase, it should be possible to see what the group interaction added.

In previous work at VMT, we have characterized two different general patterns of
chat discourse: expository narrative and exploratory inquiry [15]. These are two
common methods of conducting online discourse that embody different relationships

 Groups, Group Cognition and Groupware 3

of the group to its individual members. We view online chat as a form of text-based
interaction, where short texts respond to each other [16]. We analyze the chat
discourse with a variation of conversation analysis—a scientific methodology based
on ethnomethodological principles for analyzing everyday verbal conversation. In the
VMT project, we have begun to adapt conversation analysis to chat by taking into
account the consequences introduced by the textual medium, the math content, the
physical separation and other differences from everyday conversation.

Expository narrative involves one person dominating the interchange by
contributing more and longer texts [17]. Basically, the normal turn-taking procedures
in which members take roughly equal and alternating turns is transformed in order to
let one person narrate an extended story or explanation. For instance, if a student has
already solved a math problem that the group is working on, that student might
propose their solution or indicate that they have a solution and the others might
request an explanation of the proposed solution. There would still be some forms of
interaction, with members of an audience asking questions, encouraging continuation,
indicating understanding, raising questions, etc. But in general, the proposer would be
allowed to provide most of the discourse. In conversation, this kind of pattern is
typical where one member narrates a story or talks in detail about some events or
opinions [18]. Exposition in math has its own characteristics, such as providing
mathematical warrants for claims, calculating values, addressing issues of formal
logic, etc. But it follows a turn-taking profile similar to that of conversational
narrative.

Exploratory inquiry has a different structure. Here, the group members work
together to explore a topic. Their texts contribute from different perspectives to
construct some insight, knowledge, position or solution that cannot be attributed to
any one source but that emerges from the “inter-animation of perspectives” [9; 19].
Exploratory inquiries tend to take on the appearance of group cognition. They contrast
with expository narratives in a way that is analogous to the broad distinction between
collaboration and cooperation [20]. Collaboration involves a group of people
working on something together, whereas cooperation involves people dividing the
work up, each working by themselves on their own part and then joining their partial
solutions together for the group solution. Expository narratives tend to take on the
appearance of cooperation, where individuals contribute their own solutions and
narrate an account of how they arrived at them. In a rough way, then, exploratory and
expository forms of discourse seem to reflect group versus individual approaches to
constructing shared knowledge.

I will now analyze our experiment involving a group of college students in an
online chat discussing a series of math problems. I will try to tease apart the
individual and the group contributions to meaning making, knowledge building and
problem solving. We conducted the experiment using a set of well-defined math
problems for which it is clear when an individual or a group arrives at the correct
answer. We gave the individuals an opportunity to solve the problems on their own
with pencil and paper. We then had them enter an online chat room and decide as a
group on the correct answers. By collecting the individual papers and logging the
chat, we obtained data about the individual and the group knowledge, which we can
objectively evaluate and compare.

4 G. Stahl

The students were given 11 problems on two sheets of paper with room to show
their work and to give their answers. The problems were a variety of algebra and
geometry problems, some stated as word problems. Most required some insight. They
came from the Scholastic Aptitude Tests (SAT), which are taken by high school
students in order to apply to colleges in the United States. They are primarily multiple
choice questions with five possible answers, only one of which is correct. 1

For the individual phase of the experiment, the students had 15 minutes to
complete the problems working silently with paper and pencil. Most students stopped
work before the time was up. Their papers were collected and new sheets of paper
with the same questions were distributed. The students were then instructed to work
in randomly-assigned groups and solve the same problems online. They worked
together in chat rooms for 39 minutes.

In this paper, I analyze the results of one group of five students who worked
together in one chat room group. None of the students in this group did impressively
well on the test as an individual. They each got 2 or 3 question right out of the 11 (see
table 1) for a score of 18% or 27%.

Table 1. Problems answered correctly by individuals and the group

 1 2 3 4 5 6 7 8 9 10 11 Score
Hal X X X 27%
Dan X X 18%
Cosi X X X 27%
Mic X X 18%
Ben X X 18%
Group X X X X X X X X X 82%

For the experiment’s group phase, the students worked in a chat room using
Blackboard’s group chat facility without a shared whiteboard. The software is simple
and familiar to the students. The students did not know each other and did not have
any information about each other except for the login names. They had not worked
together before and had not participated in a chat like this before. The result of the
group work was that the group decided upon the correct answers to 9 of the 11
problems, for a group score of 82%. Thus, the group did considerably better than any
of the individual students.

However, it seems that each of the correct group answers can be attributed to one
of the students. Although each student got only 2 or 3 answers right, together at least
one of them correctly answered questions 2, 3, 4, 5, 7, 8, 9. No one understood
question 1, and the group did not get this answer either. Question 2 was correctly
answered by Hal, who persuaded the group. Question 3 was correctly answered by
everyone except Mic. Question 4 was correctly answered by Dan. Question 5 gave the
group a lot of frustration because no one could figure it out (although Mic had gotten

1 The 11 questions and the complete chat log are available at:

http://www.cis.drexel.edu/faculty/gerry/publications/conferences/2005/criwg.
The analysis in this paper is indebted to conversation analysis data sessions at the VMT
project, led by Alan Zemel, and comments from Stephen Weimar and Martin Wessner.

 Groups, Group Cognition and Groupware 5

it right on his paper); they eventually accepted the correct answer from someone
outside the group. No one understood question 6, and the group got it wrong. They
got question 7 right (following Cosi and Mic). Only Hal got question 8, but he
persuaded the others. (Ben also got it on his paper, but did not participate in the group
discussion.) Cosi got the answer to question 9. No one got questions 10 or 11, so the
group had to work on these together. The discussion of question 10 was particularly
interesting. As we will see, Cosi got the answer to question 10 and explained it to the
others (although she had not gotten it on her paper). Hal got question 11 right and the
others accepted it (although he had not gotten it on his paper).

So it appears as though the math problems were actually solved by individuals. The
group responded to proposed answers. In instances where there were competing
answers or other issues, the group required the proposer to give an account, defense or
explanation. This resulted in an expository form of discourse where one member
proposed an answer and explained why it was right. Although the group was not
experienced in working together, they succeeded in selecting the best answers that
their members could come up with. The result of the group cooperation was to
achieve a sum of their individual results.

It is particularly interesting to observe how the group negotiated their group
answers given proposals from various members. In some cases, everyone proposed
the same answer and it was easy to establish a consensus. In certain other cases, only
one person proposed an answer and the others simply went along with it. In more
interesting cases, when someone proposed an answer that contradicted other people’s
opinions or was questionable for some other reason, the proposer was required to give
an explanation, justification or accounting of their proposal. We do not have space
here to analyze each of the negotiations: how they were begun, how people
contributed, how the discussion was continued, how decisions were made and how
the group decided to move on to a new problem. In particular, we cannot go into the
integration of social chatter and math reasoning or fun making and decision making.
Rather, we will take a look at the discussion of question 10, which was particularly
interesting because no one had already solved this problem and because we can see
the solution emerging in the discourse.

Question 10 is a difficult algebra word problem. It would take considerable effort
and expertise to set up and solve equations for it. The group manages to finesse the
complete algebraic solution and to identify the correct multiple-choice answer
through some insightful reasoning. Question 10 is:

Three years ago, men made up two out of every three internet users
in America. Today the ratio of male to female users is about 1 to 1.
In that time the number of American females using the internet has
grown by 30,000,000, while the number of males who use the
internet has grown by 100%. By how much has the total internet-
user population increased in America in the past three years?
(A) 50,000,000 (B) 60,000,000 (C) 80,000,000 (D) 100,000,000 (E)
200,000,000

The core discussion of this question takes place in the chat excerpts shown in Table 2.

6 G. Stahl

Table 2. Excerpts from the chat discussion about problem 10

Line Time Name Message Interval
350 4:31:55 Mic how do we do this..
351 4:31:59 Mic without knowing the total number 0:00:04
352 4:32:01 Mic of internet users? 0:00:02

 ….
357 4:32:23 Dan it all comes from the 30000000
358 4:32:23 Mic did u get something for 10? 0:00:00
359 4:32:26 Dan we already know 0:00:03
360 4:32:44 Mic 30000000 is the number of increase in american

females
0:00:18

361 4:33:00 Mic and since the ratio of male to female 0:00:16
362 4:33:02 Mic is 1 to 1 0:00:02
363 4:33:09 Mic thats all i got to give. someone finish it 0:00:07
364 4:33:10 Mic haha 0:00:01

365 4:33:18 Cosi haha you jackass 0:00:08
366 4:33:20 Mic haha 0:00:02
367 4:33:21 Dan hahaha 0:00:01
368 4:33:26 Mic u all thought i was gonna figure it out didnt 0:00:05
369 4:33:27 Mic u 0:00:01
370 4:33:28 Mic huh? 0:00:01

371 4:33:28 Hal it would be 60,000,000 0:00:00
372 4:33:30 Mic hal 0:00:02
373 4:33:31 Mic its all u 0:00:01
374 4:33:33 Mic see 0:00:02
375 4:33:34 Mic i helped 0:00:01
376 4:33:54 Cosi ok, so what’s 11 – just guess on 10 0:00:20

 ….
386 4:34:45 Mic lets get back to 5
387 4:34:47 Cosi i think it's more than 60,00000 0:00:02
388 4:34:57 Mic way to complicate things 0:00:10
389 4:35:03 Cosi haha sorry 0:00:06
390 4:35:05 Mic life was good until you said that 0:00:02

391 4:35:07 Mic :(0:00:02
392 4:35:18 Cosi they cant get higher equally and even out to a 1 to

1 ratio
0:00:11

393 4:35:27 Cosi oh, no wait, less than that 0:00:09

394 4:35:32 Cosi 50000000 0:00:05
395 4:35:34 Cosi yeah, it's that 0:00:02
396 4:35:36 Cosi im pretty sure 0:00:02
397 4:35:37 Mic haha 0:00:01
398 4:35:38 Mic how? 0:00:01

 Groups, Group Cognition and Groupware 7

399 4:35:57 Cosi because the women pop had to grow more than the
men in order to even out

0:00:19

400 4:36:07 Cosi so the men cant be equal (30) 0:00:10
401 4:36:11 Mic oh wow... 0:00:04

402 4:36:16 Mic i totally skipped the first sentencwe 0:00:05
403 4:36:16 Cosi therefore, the 50,000,000 is the only workable

answer
0:00:00

404 4:36:19 Dan very smart 0:00:03

405 4:36:21 Cosi Damn im good 0:00:02

We can see here that the group is meandering somewhat in trying to solve problem
10. Mic raises the question of how to solve it (lines 350-352). Dan suggests that the
30,000,000 figure is key, and Mic tries to build on this suggestion. But Mic ends his
attempt with a laugh, clowning around that he was only pretending to figure out the
problem. Hal proposes that the answer is 60,000,000 (line 371), but then Cosi
complicates matters by questioning this answer (line 387).

Having rejected Hal’s proposal, Cosi proceeds to solve the problem on her own.
She reasons that the male and female population cannot grow by the same amount
from uneven numbers to arrive at equal numbers (line 392). From this, she concludes
that the answer is 50,000,000. She announces that she is “pretty sure” of this answer
(line 396). At this point, it seems that Cosi has solved the problem on her own.

Mic responds to the statement that Cosi is only “pretty sure” and not positive by
requesting an explanation of how Cosi arrived at her opinion that the answer is
50,000,000—and not the 60,000,000 that Hal proposed (line 398).

In the following lines (399, 400, 403), Cosi provides an account of her reasoning.
If the females grew by 30,000,000 then the males must have grown by less than that.
Therefore, the total growth must have been less than 60,000,000. The only answer
listed that meets this condition is 50,000,000—so that must be the correct answer.

Cosi’s extended turn providing an exposition of her thinking is interrupted only by
Mic (lines 401, 402), who simultaneously affirms Cosi’s approach, provides an
excuse for not having solved the problem himself, and admits to not having read the
problem carefully in the first place. In this way, Mic continues to move the group
toward making good decisions about which proposed answers to accept while himself
playing the fool. Dan speaks on behalf of the group (line 404), accepting Cosi’s
answer and proof by praising her as “very smart,” to which she responds (line 405),
“Damn, I’m good.” In the subsequent discussion, both Hal and Mic agree with Cosi’s
solution. Cosi is anxious to move on to another problem and finally says (line 419),
“ok great, im smart, lets move on.”

From our analysis, we can see the advantages that have long been claimed by other
researchers for collaborative learning [summarized in 21]. A number of students each
contributed their best ideas. Some students knew some answers, some others, and
together they arrived at a position where they effectively shared the whole set of best
answers that any of them had to start with. In addition, the group work sustained their
time-on-task beyond what any one student was willing to do, arriving at correct
answers for the final two problems.

8 G. Stahl

According to the foregoing analysis, the actual mathematical reasoning was done
by individual minds. The group was able to take the results of these individual
achievements and gather them together in a particularly effective way. In the end, all
members of the group had the opportunity to know more correct answers than they
could arrive at on their own. It may not be obvious that every student could then solve
all the problems on their own, but there were a number of indications in the chat that
students gained insights into aspects of the problem solving that we can assume would
stay with them as individual learning outcomes.

In this experiment, we were able to see how the group took good advantage of the
knowledge of its members, even though the group had not had any previous
experience working together and had no external scaffolding from the teacher or the
software in how to collaborate. As researchers, we know which students were able to
solve which problems on their own and we could then observe how they interacted to
solve the problems in the group context. Furthermore, we had a simple, objective
measure of mathematical skill based on correct answers to standardized SAT
problems. We observe that a group of students who individually scored 18-27% was
able to score 87% when working together. Furthermore, this impressive result can be
understood in terms of simply making good decisions about which proposals to listen
to on each problem and then spending more engaged time-on-task on the two final
problems.

2 Group Cognition in Online Math

In the previous section, the work of the student group was interpreted primarily at the
individual unit of analysis. The problem solving was discussed as the accomplishment
of individuals. The group decisions were discussed as a form of voting among people
who largely made up their minds individually. In many cases, individuals did not hold
strong opinions about the answers to the problems and therefore left the group
decision up to other individuals—who might have a higher likelihood of knowing the
correct answer—by remaining silent. However, it is possible to analyze the chat
differently, taking the group as the unit of analysis.

The central point of the alternative approach is that the meaning constructed in a
group discourse is often the result of the subtle ways in which utterances of different
speakers or writers interact, rather than through a simple addition of ideas expressed
or represented in the individual utterances.

Perhaps the greatest problem in understanding how groups work is to clarify the
relation of individual to trans-individual contributions to the group meaning making.
Clearly, individual group members may have ideas of their own that they introduce
into the discourse. Their utterances may have to wait for the right moment in the
conversational flow and they might have to design their contributions to fit into the
discourse context in order to be accepted as useful proposals with a chance of being
taken up, but they also may bring with them some premeditated meaning constructed
by their proposer. Individuals also play a necessary role as the interpreters of the
group meaning in an on-going way as they respond to the discourse [14, chapter 16].
On the other hand, the formative roles of adjacency pairs and other references among

 Groups, Group Cognition and Groupware 9

utterances underline the importance of analyzing meaning making at the group unit of
analysis, not just interpreting the utterances of individuals.

A more detailed analysis of the negotiations of the answers for questions 1 through
9 in the experiment shows that the group had methods for interacting that were quite
effective in making good decisions. They had subtle ways of coalescing the individual
group members into a collective that could work through the set of math problems,
discover solutions and decide which solutions to adopt as the group’s answers. This
suggests that the problem solving methods used by the group of students is
qualitatively different from the methods they use individually. Another way of putting
it is that the group collaboration brings additional methods at the group unit of
analysis that supplement the individual cognitive methods of problem solving. It may
be important to distinguish these different classes of methods at the different levels of
analysis, as well as to see subsequently how they work together.

In defining his concept of the zone of proximal development, Vygotsky strongly
distinguished between what a student could accomplish individually and what that
student could accomplish when working with others [8, p 86]: “It is the distance
between the actual developmental level as determined by independent problem
solving and the level of potential development as determined through problem solving
under adult guidance or in collaboration with more capable peers.” Based on
psychological experiments, Vygotsky argued that what children “could do only under
guidance, in collaboration, and in groups at the age of three-to-five years they could
do independently when they reached the age of five-to-seven years” (p. 87). In the
chat, we have seen that older students can also achieve significantly more in
collaborative groups than independently—and we have seen the methods of group
interaction that one particular group adopted in one case study to accomplish this.

We can also revisit the solving of problem 10 as a group achievement. Of course,
the sequence of recorded events—the lines in the chat log—are the same. But now we
no longer attribute the source of the messages to the individuals as the “expression” of
internal mental ideas that they have worked out in advance. Rather, we look for
evidence in the details of the log of how messages are responses to each other.

Mic’s opening question (lines 350-352) is based on the problem statement. The
problem asks how much the population has increased. A straight-forward calculation
of this increase might involve subtracting from the total number of Internet users now
the corresponding figure for three years ago. But the two numbers needed for such a
calculation are missing from the problem statement. The problem only gives indirect
clues. The problem statement thereby calls for a less direct strategy. Mic’s messages
respond to this implicit requirement by making it explicit.

Dan responds to Mic’s question by proposing an approach for coming up with a
strategy. He says (lines 357 and 359), “It all comes from the 30,000,000 we already
know.” In other words, the strategic key is to start with the clue about the number of
females having grown by 30,000,000.

(Note that to analyze the log we must disentangle line 358 from the middle of the
two fragments of Dan’s text and re-join Dan’s text [22]. Mic’s question (line 358) is
posted at the same time as Dan’s proposal, and as a consequence it is ignored and left
as a failed proposal [14, chapter 21]).

Mic’s next turn (lines 360-364) picks up on the 30,000,000 figure from Dan and
tries to take it further by adding the fact that came before that figure in the problem

10 G. Stahl

statement, namely that “Today the ratio of male to female users is about 1 to 1.” Mic
puts this forward and asks for the group to continue to develop the strategy.

Mic’s contribution is not the expression of some rational problem solving that we
might speculate took place in Mic’s mind. In fact, his contribution–if considered as an
individual proposal with math content—only vaguely suggests a mathematical logic.
It was primarily an interactive move to keep the group effort going. Following Dan’s
posting to the chat, there was an unusually long pause of 18 seconds. In face-to-face
conversation, a pause of a few seconds is embarrassingly long and exerts considerable
pressure on the participants to make another contribution; in chat, 18 seconds can
have a similar effect. So Mic repeats Dan’s reference to 30,000,000. Following
another pause of 16 seconds, Mic adds the reference to the 1-to-1 ratio. He then
explicitly calls on the other group members to join in. He admits that he cannot take it
further himself, and he laughs.

Cosi, Dan and Mic have a good laugh at Mic’s expense, taking his contribution as
a practical joke, as an attempt to look like he was making a significant mathematical
contribution and then stopping short of delivering. This fills in an otherwise
discouraging silence during which no one knows how to advance mathematically with
the problem. The laughter lightens up the interaction, allowing people to throw ideas
into the mix without worrying that they will necessarily be taken too seriously if they
are only partial, or even wrong. After Mic’s jackass-like behavior, any other
contribution would seem an improvement. In fact, Mic’s proposal and request are
taken up.

Hal then proposes that the answer “would be 60,000,000” (line 371). This is a
direct consequence of finishing Mic’s partial proposal. If there are 30,000,000
females (line 360) and the ratio of males to females is 1 to 1 (lines 361-362) and you
want to know the total number (line 351), then the conclusion that “it would be
60,000,000” is at hand. Mic takes this to be the answer to problem 10 and tries to take
partial credit for it by pointing out, “u see I helped” (lines 373-375).

At that point, Cosi suggests the group should go on to problem 11 and “just guess”
on 10 (line 376). This declines to affirm Mic’s acceptance of 60,000,000 as the
answer to question 10, but does so without raising this as a topic for further group
discussion. Without making a decision about 10, the group goes on to all decide that
the answer to problem 11 is C (lines 378-385, spanning just half a minute), as already
stated by Hal in line 353.

Mic then summarizes the group’s status as: “So we got B for 10 and c for 11; lets
get back to 5” (lines 384-386). At this point, Cosi objects to Mic’s continued
assumption that Hal’s 60,000,000 is the answer to problem 10. Mic and Cosi joke
about their disagreement. Again, the group’s light-hearted attitude avoids the potential
of disagreements within the group becoming disruptive of the group functioning.

Cosi then formulates an argument (line 392) why the answer cannot be 60,000,000.
The male and female populations cannot get higher equally (i.e., by 30,000,000 each)
because they have to even out from unequal numbers according to the problem
statement. After formulating this text, Cosi checks and then corrects her previous
claim that “I think it’s more than 60,000,000” (line 387): “Oh, no wait, less than that:
50,000,000” (lines 393-394).

Cosi is somewhat hesitant about her revised claim. First she checks it and says,
“Yeah, it’s that” (line 395), followed by the hedge, “Im pretty sure” (line 396). Mic

 Groups, Group Cognition and Groupware 11

continues the laughter and then requests an account of how Cosi is pretty sure that the
answer should be 50,000,000.

After a 19 second pause, Cosi takes the extended expository turn that Mic had
offered her and the others had left open. She lays out a concise proof of her claim. Her
argument concerns the increase in the number of females and the ratios of male to
female users—the issues raised at the beginning of the group discussion by Dan and
Mic. It is plausible that Cosi used the 19 second pause to reflect upon the solution that
the group had come to and that her contributions had completed. Thus, her well-
worked out retrospective account seems like the expression of her mental work in
constructing the narrative explanation, although her earlier contributions to solving
the math of the problem seemed more like spontaneous reactions to the flow of the
group discourse.

A solution to problem 10 carried out from scratch using algebraic methods that
translated the word problem into a set of equations to be solved for unknown values
would have looked very different from Cosi’s argument. Her contributions to the chat
did not express an independent, individual approach to the problem. Rather, they were
responses to preceding contributions. Cosi’s texts performed checks on the previous
texts and extended their arguments in directions opened up and called for by those
previous contributions. Although Dan, Mic and Hal did not carry out the further steps
that their own contributions required, they succeeded in starting a discourse that Cosi
was able to repair and complete.

This analysis of the log excerpt gives a more group-centered view of the
collaborative solving of the math problem by the group. Of course, at the level of
individual postings, each contribution was that of an individual. But it is not necessary
to see those contributions as expressions of prior private mental activities. Rather,
they can be seen as responses to the previous texts, the context of the problem-solving
task (e.g., the elements of the problem 10 text) and elicitations of contributions to
come. These ties of the individual postings to the sequentially unfolding group
discourse can be seen in the form of the postings themselves: single utterances do not
stand on their own, but make elliptical references to previous mentionings, indexical
references to matters in the physical and discourse situation and projective references
to anticipated future responses or actions of other people [see 14, chapter 12]. The
references weave a temporal fabric of discourse that defines the meaning of each text
within its narrative context. Thus, the individual contributions are incorporated into a
problem solving dialog at the group unit of analysis, which is where the meaning of
the log is constructed.

In weaving the discourse fabric, groups use different methods. We have discussed
two methods of group discourse used in math problem solving in this chat:
exploratory inquiry and expository narrative. In the excerpt concerning problem 10,
we have seen that the group first explores a solution path by different students making
small contributions that build on each other sequentially. When a candidate answer is
reached that someone is “pretty sure” about, that person is asked to provide an
extended account or proof of the answer. Thus, Cosi participates first in the joint
exploratory inquiry and then provides an expository narrative. Both these methods are
interactive discourse methods that involve responding to requests, structuring texts to
be read by other group members and eliciting comments, questions and uptake.

12 G. Stahl

Conversation analysts have identified adjacency pairs as a powerful way in which
meaning is interactively constructed. An adjacency pair is a set of utterances by
different people that forms a smallest meaningful unit [23]. For instance, a greeting or
a question cannot meaningfully stand alone. You cannot meaningfully express a
greeting or a question without someone else being there in the discourse to respond
with a return greeting or an answer. The other speaker may ignore, decline or respond
to your greeting or question, but your utterance cannot be a greeting or a question
without it addressing itself to a potential respondent. The respondent may just be an
imaginary dialog partner if you are carrying out the dialog in your mind [see 9].
Adjacency pairs are fundamental mechanisms of social interaction; even very young
speakers and quite disabled speakers (e.g., advanced Alzheimer sufferers) often
respond appropriately to greetings and questions. Adjacency pairs are important
elements for weaving together contributions from different participants into a group
discourse.

When I analyzed a different online chat of mathematics problem solving, I defined
an adjacency pair that seemed to play a prominent role. I called it the math proposal
adjacency pair [14, chapter 21]. In that chat, a math proposal adjacency pair consisted
of a problem solving proposal by one person followed by a response. The proposal
addressed the other students as a group and required one or more of them to respond
to the proposal on behalf of the group. The proposal might be a tactical suggestion,
like “I think we should start with the 30,000,000 figure.” Alternatively, it might be a
next step in the mathematical solution, like “They can’t get higher equally and even
out to a 1 to 1 ratio.” The response might simply be “k”—“okay, that’s interesting,
what’s next?” The pattern was that progress in problem solving would not continue
after someone made a proposal until the group responded to that proposal. If they
responded affirmatively, a next step could then be proposed. If they responded with a
question or an objection, then that response would have to be resolved before a next
proposal could be put forward. It was important to the group that there be some kind
of explicit uptake by the group to each proposal. A counter-example proved the rule.
One participant made a failed proposal. This was an attempt to suggest a strategy
involving proportions. But the proposer failed to formulate his contribution as an
effective first part of a math proposal adjacency pair, and the rest of the group failed
to take it up with the necessary second pair-part response.

In the chat we are analyzing now, the math proposal adjacency pairs have a
somewhat different appearance. We can identify proposals in, for instance, lines 352,
357, 360, 362, 371, 387, 392 and 394. None of these is followed by a simple, explicit
response, like “ok.” Rather, each is eventually followed by the next proposal that
builds on the first, thereby implicitly affirming it. This is an interesting variation on
the math proposal adjacency pair method of problem solving. It illustrates how
different groups develop and follow different group methods of doing what they are
doing, such as deciding upon answers to math problems.

If we combine the proposals from Mic, Dan, Hal and Cosi, they read like the
cognitive process of an individual problem solver:

How can I figure out the increase in users without knowing the total
number of internet users? It seems to all come from the 30,000,000
figure. 30,000,000 is the number of increase in American females.
Since the ratio of male to female is 1 to 1, the total of male and

 Groups, Group Cognition and Groupware 13

female combined would be 60,000,000. No, I think it must be more
than 60,000,000 because the male and female user populations can’t
get higher at equal rates and still even out to a 1 to 1 ratio after
starting uneven. No, I made a mistake, the total must be less than
60,000,000. It could be 50,000,000, which is the only multiple
choice option less than 60,000,000.

Mathematical problem solving is a paradigm case of human cognition. It is
common to say of someone who can solve math problems that he or she is smart. In
fact, we see that taking place in line 404. Here, the group has solved the problem by
constructing an argument much like what an individual might construct. So we can
attribute group cognition or intelligence to the group [see 14, esp. chapter 19].

Unfortunately, the group of students in the chat log does not seem to attribute the
problem solving intelligence to itself, but only to one of its members, Cosi. Because
she takes the final step and arrives at the answer and because she provides the
narrative account or proof, Dan says of her, “very smart” (line 404). Later (line 419),
Cosi agrees, downgrading the self-praise by using it to close the discussion of
problem 10 and of her role in solving it by proposing that the group move on to a
remaining problem: “Ok great, im smart, lets move on.” Casting Cosi as the smart one
who solves problems leaves Mic cast as the jackass or class clown when in fact Mic is
very skilled at facilitating the chat so that the whole group solves problems that
neither Mic nor the others solved independently.

There is an ideology of individualism at work here that encourages both
educational researchers and student participants to view problem solving as an
accomplishment of individuals rather than groups. This has serious consequences for
the design and adoption of groupware to support problem solving, as well as for
research methodology and student learning. If groupware designers tried to support
collaborative interactions, then they might design more than just generic
communication platforms for the transmission of expressions of personal ideas. If
researchers studying the use of groupware focused on processes of collaboration and
the methods that groups used to solve problems—as opposed to treating exclusively
individuals as cognitive agents—then research methods might focus more on
conversation analysis [17], video analysis [24] and their application to discourse logs
than on surveys and interviews of individual opinions. If students using groupware
conceived of their work as interactively achieving a group solution, they might take
more advantage of groupware collaboration features and might structure their textual
contributions more explicitly as parts of an interwoven fabric of collaborative
knowledge-building group discourse.

3 Groupware to Support Group Cognition

The first step in thinking about the design of groupware today is to understand the
methods that groups use to accomplish problem solving, scientific inquiry, decision
making, argumentation and the other tasks that they want to do. Generic
communication platforms developed to meet the needs of corporations will continue
to make new technologies available in response to market pressures. Within
education, course management systems to support the administration of distance

14 G. Stahl

education will proliferate under their own economic drives. But those developments
are almost exclusively guided by a philosophy of individual cognition and the transfer
of representations of mental contents.

The preceding analysis of a case study of group cognition suggests a variety of new
design principles. Clearly, one or two case studies is not enough to inform a new
approach to groupware design. This paper has only suggested the kind of analysis that
is needed to investigate and characterize the methods that groups of students might
use to do their work collaboratively. Different age groups, tasks, cultures and
environments will introduce considerable variety in how groups constitute
themselves, define their work, socialize, problem solve, persuade, guide, decide,
conclude, etc. Nevertheless, a number of principles can already be suggested. It is
important to start thinking about groupware design because ideas for innovative
functionality and prototypes of new components will have to be tried out with online
groups and the resultant logs analyzed. One cannot know how new technologies will
lead to new member methods without such investigation.

Here are some very preliminary suggestions for groupware design principles:

Persistency and Visibility. Make the group work visible and persistent so that
everyone in the group can easily see what has been accomplished by all members.
Ideally, important contributions should stand out so that people do not have to search
for them, but are made aware of them with little or no effort. This is a non-trivial
requirement, since the work of a group quickly becomes too extensive for everyone to
read and keep track of. The software must somehow help with this.

Deictic Referencing. As discussed above, the references from one message to another
or to objects in the problem context are essential to the meaning making. Software
could make these references visible under certain conditions. Patterns of references
among proposals, adjacency pairs and responses between different group members
could also be displayed in order to give participants indicators about how their group
interaction is going.

Virtual Workspaces. Ideally, the groupware would encourage noticing, recognizing
and reflecting on related contributions. There should certainly be group workspaces
for different kinds of work to be done together, creating shared artifacts. For instance,
there could be group workspaces for taking notes and annotating them, for jointly
navigating the Internet, for constructing shared drawings, for building formal
arguments together, for collecting annotated bibliographies and other lists or
collections. Issues of turn-taking, ownership and control become important here.

Shared and Personal Places. It may be useful to distinguish and sometimes to
separate individual and group work [13]. However, it may be important to make even
the individual work visible to everyone. Group accomplishments build on the
individual contributions. Even contributions that the proposer does not consider
significant may, as we have seen above, provide a key to progress of the group. In
addition, group members often want to know what people are doing when they are not
active in the group. Content should move fluidly from place to place.

Computational Support. Of course, a major advantage of having groupware systems
running on computers is that they can provide computational support to the work of

 Groups, Group Cognition and Groupware 15

their users. They can filter or tailor different views or computational perspectives
[14, chapter 6] of materials in the chat or workspaces, as well as providing search,
browsing and annotating facilities. They can play various moderator roles.

Access to Tools and Resources. Another advantage of the networked computer
infrastructure is that groupware can provide structured access to information, tools
and other resources available on the Internet, for instance in relevant digital libraries
and software repositories.

Opening New Worlds and (Sub-)Communities. Finally, Internet connectivity
allows for groups and their members to participate in larger online communities and
to interact with other groups—either similar or complementary. Groupware could
facilitate the building of open-ended networks of individual, group and community
connections, or the definition of new sub-communities.

Allowing Natural Language Subtleties. While computer support brings many
potential advantages, it also brings the danger of destroying the extreme flexibility
and adaptability of the natural language used in conversation and group interactions.
Groupware designs should be careful not to impose rigid ontologies and sets of
allowable speech acts for the sake of enabling automated analyses. It should permit
the use of overloaded, multiple functioning, subtle linguistic expression that is not
reified, stereotyped, coded or packaged, but that opens space for interpretation,
engagement, creativity, problem solving. As we saw in the chat, even a simple laugh
can perform multiple complex roles simultaneously. Chat is a vibrant form of human
interaction in which people exercise their creativity to invent linguistic novelties such
as abbreviations, contractions, emoticons and new ways of interacting textually.
Groupware should support this, not cramp it.

References

[1] Shannon, C. & Weaver, W. (1949) The Mathematical Theory of Communication,
University of Illinois Press, Chicago, Il.

[2] Johnson, D. W. & Johnson, R. T. (1989) Cooperation and Competition: Theory and
Research, Interaction Book Company, Edina, MN.

[3] Suchman, L. (1987) Plans and Situated Actions: The Problem of Human-Machine
Communication, Cambridge University Press, Cambridge, UK.

[4] Hutchins, E. (1996) Cognition in the Wild, MIT Press, Cambridge, MA.
[5] Engeström, Y. (1999) Activity theory and individual and social transformation. In Y.

Engeström, R. Miettinen, & R.-L. Punamäki (Eds.), Perspectives on Activity Theory,
Cambridge University Press, Cambridge, UK, pp. 19-38.

[6] Garfinkel, H. (1967) Studies in Ethnomethodology, Prentice-Hall, Englewood Cliffs, NJ.
[7] Heidegger, M. (1927/1996) Being and Time: A Translation of Sein und Zeit, (J.

Stambaugh, Trans.), SUNY Press, Albany, NY.
[8] Vygotsky, L. (1930/1978) Mind in Society, Harvard University Press, Cambridge, MA.
[9] Bakhtin, M. (1986) Speech Genres and Other Late Essays, (V. McGee, Trans.),

University of Texas Press, Austin, TX.
[10] Wessner, M. & Pfister, H.-R. (2001) Group formation in computer-supported

collaborative learning, In: Proceedings of ACM SIGGROUP Conference on Supporting
Group Work (Group 2001), Boulder, CO, pp. 24-31.

16 G. Stahl

[11] Stahl, G. & Herrmann, T. (1999) Intertwining perspectives and negotiation, In:
Proceedings of International Conference on Supporting Group Work (Group '99),
Phoenix, AZ, pp. 316-324. Available at: http://www.cis.drexel.edu/faculty/gerry/cscl/
papers/ch07.pdf.

[12] Vogel, D., Nunamaker, J., Applegate, L., & Konsynski, B. (1987) Group decision support
systems: Determinants of success, In: Proceedings of Decision Support Systems (DSS
'87), pp. 118-128.

[13] Stahl, G. (2002) Groupware goes to school. In J. H. J. Pino (Ed.) Groupware: Design,
Implementation and Use: Proceedings of the 8th International Workshop on Groupware
(CRIWG '02), Volume LNCS 2440, Springer, La Serena, Chile, pp. 7-24. Available at:
http://www.cis.drexel.edu/faculty/gerry/cscl/papers/ch11.pdf.

[14] Stahl, G. (2006) Group Cognition: Computer Support for Building Collaborative
Knowledge, MIT Press, Cambridge, MA. Available at:
http://www.cis.drexel.edu/faculty/gerry/mit/.

[15] Zemel, A., Xhafa, F., & Stahl, G. (2005) Analyzing the organization of collaborative
math problem-solving in online chats using statistics and conversation analysis, In:
Proceedings of CRIWG International Workshop on Groupware, Racife, Brazil.

[16] Garcia, A. & Jacobs, J. B. (1999) The Eyes of the Beholder: Understanding the Turn-
Taking System in Quasi-Synchronous Computer-Mediated Communication, Research on
Language and Social Interaction, 34 (4), pp. 337-367.

[17] Sacks, H. (1992) Lectures on Conversation, Blackwell, Oxford, UK.
[18] Bruner, J. (1990) Acts of Meaning, Harvard University Press, Cambridge, MA.
[19] Wegerif, R. (2005) A dialogical understanding of the relationship between CSCL and

teaching thinking skills, In: Proceedings of International Conference of Computer
Support for Collaborative Learning (CSCL 2005), Taipei, Taiwan.

[20] Dillenbourg, P. (1999) What do you mean by "collaborative learning"? In P. Dillenbourg
(Ed.) Collaborative Learning: Cognitive and Computational Approaches, Pergamon,
Elsevier Science, Amsterdam, NL, pp. 1-16.

[21] Strijbos, J.-W., Kirschner, P., & Martens, R. (Eds.) (2004) What We Know about CSCL ...
and Implementing it in Higher Education, Kluwer Academic Publishers, Dordrecht,
Netherlands.

[22] Cakir, M., Xhafa, F., Zhou, N., & Stahl, G. (2005) Thread-based analysis of patterns of
collaborative interaction in chat, In: Proceedings of international conference on AI in
Education (AI-Ed 2005), Amsterdam, Netherlands.

[23] Duranti, A. (1998) Linguistic Anthropology, Cambridge University Press, Cambridge,
UK.

[24] Koschmann, T., Stahl, G., & Zemel, A. (2005) The Video Analyst's Manifesto (or The
Implications of Garfinkel's Policies for the Development of a Program of Video Analytic
Research within the Learning Sciences). In R. Goldman, R. Pea, B. Barron, & S. Derry
(Eds.), Video Research in the Learning Sciences. Available at:
http://www.cis.drexel.edu/faculty/gerry/publications/journals/manifesto.pdf.

A Framework for Prototyping
Collaborative Virtual Environments

Clinton Jeffery, Akshay Dabholkar, Kosta Tachtevrenidis, and Yosep Kim

Department of Computer Science, New Mexico State
{jeffery, adabholk, ktachtev, ykim}@cs.nmsu.edu

Abstract. Unicron is a platform for rapidly developing virtual environ-
ments that combine two popular forms of collaboration: a 3D collabora-
tive virtual environment fostering meetings, appointments, whiteboard
sessions and lectures, along with a 2D development environment includ-
ing collaborative software design, text editing, and debugging tools. This
paper presents novel aspects of the Unicron design and implementation.

Keywords: Collaborative virtual environments.

1 Introduction

Collaborative 3D virtual environments (CVEs) are highly successful in the area
of entertainment, in games and social environments such as Everquest and
There.com. This success suggests enormous potential in many other domains,
especially those involving geographically-dispersed participants, such as large-
scale software development efforts, or distance education.

In order to apply CVE’s successfully to these other domains, several major
obstacles must be overcome. This paper addresses two of those obstacles: the
high cost of developing new CVE’s which constitutes a barrier to entry, and the
importance of bringing existing 2D collaborative tools along to get the “real”
domain-specific work done. We have constructed a CVE platform called Unicron
in order to explore the tools and methods needed to solve these problems.

2 Motivation

Unicron was initiated for the purpose of computer science distance education.
Existing distance education tools such as WebCT lack domain-specific support,
such as the need for an instructor to look at an individual student’s debugging
session and explain how to read what the student sees on their screen. Collab-
orative editors abound, but tools for collaborating over compiler diagnostics or
debugger sessions are not common.

We turned to collaborative virtual environments because they have proven
highly effective at bonding people together and providing effective substitutes for
in-person social necessities such as chatting, making appointments, and holding

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 17–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 C. Jeffery et al.

meetings. Many users of CVEs work productively every day with people they
have never met face to face. The high cost of developing a CVE was seemingly
prohibitive, so we developed a research project aimed at reducing this cost.
Unicron’s feature set was adapted several times during the construction of our
first “low cost” CVE by surprising actual “high cost” tasks encountered during
development.

The initial goal for Unicron was to produce a CVE that brings a Computer
Science department experience to remote locations, including as many aspects as
possible of the freshman-through-junior year experience. The virtual community
is modelled after the appearance and actual dynamic content of the 1st floor of
Science Hall at NMSU. Remote students gain access to the department’s tools
and expertise (such as CS software tools, seminars and meetings, lab assistants).

Access to CS computers and software tools can already accomplished by
existing 2D tools, and seminars and meetings can be held using teleconferencing
rooms, so a 3D virtual community is in principle unnecessary, but in practice
we feel it offers several advantages. Others’ experience with Viras [15] supports
the idea that a 3D space provides better social awareness than 2D places of
comparable size and complexity. In addition, we believe 3D virtual spaces borrow
successfully from users’ expertise at remembering and navigating 3D real spaces
to provide superior ease of learning and use.

Compared with Viras’ use of an abstract and customizable archipelago, it
seems unimaginative to base a 3D space on a real academic department. While
the Unicron framework can be used to build abstract spaces, using a real space
also has advantages. Using the Science Hall model, transfer students already
know the physical environment by the time they arrive at NMSU. Also, faculty
and students who become familiar with the real Science Hall, such as prospec-
tive students from around the state who visit for a five week summer session,
will already know their way around the 3D model when they see it. Together,
this helps students and faculty correlate distance education experiences with
on-campus CS education experiences, and simplifies their orientation into the
NMSU CS department.

A virtual community both complements and contrasts with traditional video
teleconferencing, and with web-based tools such as WebCT. While it is impos-
sible to set up cameras from every angle in every room, it is very possible to
supplement the traditional distance-learning cameras and digital capture devices
in key locations with a 3D model of the department. Special-purpose Internet-
based collaborative versions of CS laboratory software, such as text editors and
compilers, are part of this virtual CS community. Integration of existing distance-
education technology into this 3D virtual community is also important.

To the user, Unicron looks and feels like an interactive 3D videogame ap-
plication on their PC, within which they can move around, examine signs and
notices, go to class or to an instructor’s office hours, and go to a virtual lab to
work on assignments. Within the virtual lab, the view often shifts to a higher-
resolution 2D view of the tools, but the collaborative nature of the environment
(chatting, asking the TA or instructor questions, etc.) remains consistent. Text

A Framework for Prototyping Collaborative Virtual Environments 19

and voice chat modes can be set to local proximity (seen heard automatically
by those nearby in the 3D environment) or to select individuals by name (closer
to a phone or private chat style of communication).

Perhaps the “killer application” targeted by the virtual environment is to see
who is available to provide (remote) technical assistance, and then obtain that
assistance (say, with debugging a program) in a 2D view of code. The convenience
factor of being able to perform that task in real time despite the students or
instructor being far away or simply away from the office is tremendous. This
replaces long sequences of e-mails in which student and instructor struggle to get
to the bottom of the student’s problem which the student may not understand
well enough to describe precisely, or which the student may not have the writing
skill to describe in less than a long and painful message.

3 Design

Unicron consists of several components that form the middle layer in a rapid
prototyping framework for collaborative virtual environments:

– in the bottom layer, a very high level language was augmented with ultra-
simple 3D, network, and audio API’s.

– the Unicron class library provides infrastructure for the networked 3D envi-
ronment, e.g. the behavior of doors, whiteboards, and avatars; the Unicron
server enables user interaction and shares state between clients; Unicron also
provides simple “builder” tools to generate a virtual environment from in-
puts such as 2D floor plan data and extract textures from digital camera
photos.

– the application layer for any particular CVE generated using Unicron con-
sists of: a 3D model produced semiautomatically using Unicron builder tools;
a set of domain collaboration tools; and a set of user accounts, created on
the Unicron server.

Figure 1 shows several aspects of the Unicron client-server architecture.
Unicron was developed as a prototyping framework rather than a particular

CVE because the same properties that are needed in order to easily modify
and experiment with the integration of the CVE and the collaborative 2D tools
also make it relatively easy to construct new CVE’s. Objects in the virtual
environment are built using a simple 3D API in a very high-level general purpose
applications prototyping language. A very high-level language has been employed
by other systems for rapid prototyping virtual reality environments, such as Alice
[14]. Our emphasis on collaboration is different from that effort’s emphasis on
graphics and animation.

3.1 Language Layer

Some of the research effort in developing Unicron was conducted in terms ex-
tending a very high level language to support collaborative virtual environments.

20 C. Jeffery et al.

Fig. 1. Unicron CVE Architecture

Simple high level interfaces to graphics, networking, and audio were added or
extended to the Unicon programming language in order to build Unicron [10].
Unicon is described at http://unicon.org.

Language extension is selected instead of writing libraries or modules when a
feature is general, or when it has the need or the potential to interact with other
features in the language virtual machine or runtime system. Once a given hard-
ware capability is sufficiently ubiquitous, adding control structures and built-
in syntax to access it is not just a notational convenience, but an enabling
technology.

3.2 Class Library Layer

The Unicron class library primarily serves to model virtual environment func-
tionality, independent of its views and controls. The research contribution here
is not to invent new paradigms, but to explore the simplest implementation
techniques that provide sufficient performance on current hardware. This design
bias, combined with the very high level language used, make it easy to add new
features and conduct experiments. This is appropriate since CVE technology is
still in its infancy and only gradually moving towards adolescence: many novel
domain features need to be explored in the next decade.

The virtual environment model is a graph data structure, in which “room”
objects are nodes, and doors and openings are edges with interesting properties.

A Framework for Prototyping Collaborative Virtual Environments 21

It includes relatively static data that is replicated to all clients at install- or
load-time and usually not modified during the middle of a user session, as well
as dynamic data that can be modified by users. The model is controlled and
maintained on a master server, which sends each client that small subset of the
dynamic data that is needed for the user’s current projection. The server sends
dynamic information only to those users’ who are in proximity or otherwise need
be aware of that information. Where possible, multiple dynamic state changes
are bundled together into a single network packet. These approaches reduce the
server’s network load. As with most CVE’s the server remains the main limit to
scalability despite these techniques.

We developed our own portable multiplatform representation of the model,
after trying many state of the art technologies that we expected to use, such
as SQL, XML, VRML, and X3D. We were surprised not to be using VRML or
X3D, but they proved much too low-level and cumbersome for our purpose, due
to their generality. Avoiding SQL or simpler database technologies such as Ac-
cess or GDBM allows our server to be brought up trivially in new environments.
This aids in testing, makes creating new Unicron-based worlds trivial, and sim-
plifies tasks such as migrating server state to a new architecture, as we found
when moving from a 32- to 64-bit platform. The static and dynamic state is all
represented using text files in subdirectories in the file system. So far we have
not observed a performance problem due to this choice, although one does have
to be sensible about how often the server saves frequent dynamic state changes
such as avatar moves.

Examples of static and dynamic model data are presented below; first a
Room object, then a Door out of that room, then the dynamic state for that
door. These files are simple enough to edit or debug easily by hand, and easily
generated by a level editor. The coordinate system is a simple cartesian system
with units of 1 meter with the origin at the northwest corner of our building.

static properties of a room

Room {

name SH 167

x 29.2

y 0

z 0.2

w 6

h 3.05

l 3.7

floor Rect { texture floor2.gif }

obstacles [

Box { # window sill

Rect {coords [29.2,0,.22, 29.2,1,.22, 35.2,1,.22, 35.2,0,.22]}

Rect {coords [29.2,1,.22, 29.2,1,.2, 35.2,1,.2, 35.2,1,.22]}

}

]

decorations [

Rect { # window

22 C. Jeffery et al.

texture wall2.gif

coords [29.2,1,.22, 29.2,3.2,.22, 35.2,3.2,.22, 35.2,1,.22]

}

Rect { # whiteboard

texture whiteboard.gif

coords [29.3,1,2.5, 29.3,2.5,2.5, 29.3,2.5,.4, 29.3,1,.4]

}

]

}

static properties of a door

Door {

x 33

y 0

z 3.9

height 2.3

plane 3

rooms [SH 167, cooridoor 167]

}

dynamic state of a door

link {

name link1

openness 1.0

delta 0

direction 1

}

The intent of this human readable format was to be concise and human-
maintainable as part of the larger goal of reducing the effort to develop CVE’s.
In practice graphical tools are usually used to generate models, but human-
readable output is still useful. The entire Science Hall first floor static model
data is around 30KB, making it feasible to send out new models in-session or at
program startup as part of the patcher.

3.3 Application Layer

The Unicron client, called NSH, renders 3D environment sessions in one of many
tabbed buffers, which can also include collaborative editing, compilation, execu-
tion, debugging, and UML design sessions. The 3D CVE sessions support lecture,
lab, and office hour academic functions, serving largely to coordinate more de-
tailed collaborative activities using the other tools. A subgraph of the whole
client projection of the CVE is rendered, based on a simple proximity heuristic;
as a user moves into a new room, new nodes in the graph become visible, other
nodes are deemed invisible and derendered, and the server changes the set of
dynamic data for which the client will be informed.

The initial proximity heuristic (the null heuristic) rendered all static data
and all available dynamic data at each step. This worked surprisingly well on

A Framework for Prototyping Collaborative Virtual Environments 23

reasonable OpenGL implementations, but did not scale well on the typical Win-
dows clients we expect to find in users’ homes. A second naive heuristic rendered
all nodes within a distance k in the Room graph, unless a closed door prevented
visibility. This works sufficiently, but can be improved with very little effort by
varying k as the graph is traversed, based on the direction the user is facing
and the edge proprties being traversed. For example, people cannot see around
corners, although they may hear around them. The rendering traversals can be
precomputed during initialization when the static data is loaded. Other high
performance algorithms such as traversals of binary space partition trees are not
implemented in Unicron yet because graphics fidelity has been a lower priority
than networking and collaboration aspects of the CVE framework thusfar.

The graphics fidelity of the Unicron virtual environment is on the low side.
High graphical fidelity requires an order of magnitude more effort in terms of
texture art as well as programming, reducing our ability to add experimental
domain-specific features, without changing functionality much from our distance
education perspective. This tradeoff is acceptable for Unicron because the CVE
serves largely for the coordination of collaborative 2D tool sessions, and because
it needs to run on stock PC’s without special hardware, rather than a high-
fidelity virtual reality system with head mounted display and data gloves or
other VR peripherals.

Unicron’s network protocol and architecture is simple, but features several
hybrid aspects. Unicron’s architecture decouples simulation from rendering, as
is the case for Alice [14]. The simulation is performed on a shared server cluster
which also handles voice transmission and recording processes.

Client messages are classified as vital or transient and sent by TCP or UDP
accordingly. Private communications (both chat and audio) are sent peer-to-peer
if possible, but a central server is used for forwarding between peers that cannot

Fig. 2. Avatars

24 C. Jeffery et al.

communicate directly due to firewalls, as well as maintaining shared state of
many forms. Secondary servers similar to the booster boxes advocated by IBM
Zurich are deployed at sites where substantial bandwidth sharing is enabled by
their use [2]. In our case this includes the campuses of our educational partners,
a consortium of two-year colleges.

3.4 Avatars

Unicron’s avatars are graphically simple, but customizable communication tools
(Figure 2). Avatars require about as many graphical primitives as would a
LEGO(tm) figure, and feature the ability to point, an identifying label, and
a visual indication when audio or text chatting is performed.

Creating an avatar is a simple exercise. Using the GUI, users can customize
their clothing using colors or textures, and provide a GIF or JPG image to
present their face in an ordinary rectangle or texturemapped within an egg-
shaped head, which is more recognizable from the side or rear.

4 Implementation

Unicron is written in the Unicon programming language [11], a descendant of
Icon [7]. Unicon features a set of 3D graphics facilities based on OpenGL that
are profoundly simpler and easier to learn and use than OpenGL or Java3D [12].

In addition to those features already described, Unicron’s first incarnation
as a CS education tool features:

– Audio stream access between selected locations, allowing hands-free verbal
communication.

– Dynamic classroom projector and electronic whiteboard output are inte-
grated into the 3D environment

– Passive capture and recording (via microphones and high-resolution digital
cameras) of classroom lectures. The audio and conventional black/white-
board content are captured and integrated into the 3D environment in near
real-time.

– A collaborative software development environment, developed to include spe-
cial purpose, multi-user shared-view versions of compilers (for C, C++, and
Java), programmer’s editors, debuggers, and software design (UML) dia-
gramming tools.

4.1 An Immersive 3D Graphical Environment

Unicron’s graphical environment is cartoon-like (similar to popular games),
rather than aiming at being photorealistic as for many CVEs such as Le Deux-
ieme Monde. We believe there will be cultural side-benefits compared with tra-
ditional distance learning: for example, students will not have to engage in eye
contact, and will have less fear of embarrassment while asking questions. Figure 3
shows example scenes students might see in this environment.

A Framework for Prototyping Collaborative Virtual Environments 25

Fig. 3. Virtual Academia with Integrated Whiteboards, Chat and Voice

Fig. 4. Layout Editing using Ordinary Floor Plans

The virtual whiteboard is a fairly standard collaborative tool; NMSU’s elec-
tronic classroom features custom local software that feeds the whiteboard con-
tent up in Adobe SVG (an XML) format via HTTP, where it is available to the
CVE along with other SVG plugin-equipped browsers.

Besides whiteboards and their pens which naturally relate to interactions
with 2D drawings, other interactive objects within this environment include
avatars (other users), books (on-line documentation), and virtual workstations.
Virtual workstations serve to integrate and interconnect with 2D collaborative
applications; for example, to join someone’s 2D collaborative editor session, walk
over to the workstation their avatar is at, and click on their machine. Visible
indications of which machines are occupied, and which printers have long wait-
queues are other example uses of virtual objects, enabling remote users to select
a computer on which to remote login or select a printer to receive a print job.

26 C. Jeffery et al.

While open-source image manipulation and 3D tools for artists are abundant,
free tools dedicated to simply and rapidly generating 3D virtual buildings from
floor plans are scarce. After exploring several alternatives including VRML- and
X3D-capable 3D tools, we failed to find what we needed and developed a crude
“level wizard” that generates our environment directly from a dialog specifying
the default ceiling, walls, and floors, followed by a semiautomatic room layout
extractor. The layout extractor allows the developer to specify the rooms in
the model directly from an ordinary floor plan image file, which may have been
scanned-in, drawn by hand, or captured from another tool as a screen shot.

4.2 Collaborative Software Development Environment

Computer Science faculty working with students at a distance need more than
a bulletin board or chat facility, they need to see the contents of the software
development tools that are running on the student’s screen, to advise the student
about compiler errors and runtime errors they may be experiencing, and show
them how to perform problem solving tasks such as debugging. Collaboration
software such as Centra and NetMeeting allow shared views of documents, but
not within the context of software development. The remote-control genre of
commercial software (such as PC Anywhere or RealVNC) provides shared views
of applications, but at a considerable cost in bandwidth. For Computer Science
instruction, a cross-platform solution (for Linux, UNIX, and Windows) is often

Fig. 5. A collaborative development environment

A Framework for Prototyping Collaborative Virtual Environments 27

needed; specifically, one that is open source, allowing it to be integrated into the
virtual community environment; RealVNC might be a good candidate. In New
Mexico most of the population is rural and many students still use dialup, where
a minimum-bandwidth solution is needed.

Unicron’s collaborative development environment prototype called Pegasus
is shown in Figure 5. The prototype allows users to edit text, watch each other,
and chat. We are in the process of adding hands-free audio communication, and
collaborative views of other areas of software development such as UML design
diagrams, compilation, execution, and debugging output. Pegasus will also be
integrated into the 3D environment in the preceding section. Instructors will be
able to walk around a virtual lab, talk with students, and look at their virtual
screens, zooming in to the high resolution collaborative environment view when
questions require on-screen details.

5 Innovations

The primary innovations thusfar in Unicron are not in the user-visible application
experience, nor in the CVE architecture, but in the runtime system support, class
library and tools that reduce the programming effort necessary to build a CVE.
This support includes both graphics, networking, audio and the integration of
these subsystems.

CVE’s have a classic problem for event-driven systems, namely, that they
have multiple event streams. In Unicron, this consists of a TCP chat connec-
tion, a UDP connection for most 3D environment updates, and the window sys-
tem input handling. Performance requirements dictate that these connections be
checked continuously; but polling is too expensive. On UNIX/X11 the select()
is supposed to be good for this, but on MS Windows select() takes only net-
work connections, and on both platforms we found it necessary to write our own
runtime system support to avoid polling.

6 Related Work

Unicron is related to both 3D collaborative virtual environments and 2D collab-
orative applications. Both Unicron’s 3D environment and 2D collaborative tools
owe much to fundamental internet communication technologies such as chat,
mailing lists, and especially MUDs and MOOs featuring different rooms for dif-
ferent topics or tasks [20]. Sony’s EverQuest (www.everquest.com) popularized
multi-user virtual environments that add an immersive first-person 3D graphi-
cal world onto a collaboration tool that still largely consists of MUD-like text
chat. EverQuest handles thousands of users and works adequately over 28.8K
modems. Digital Space Traveler, available from www.digitalspace.com, demon-
strates the potential for voice and 3D sound in virtual environments. Adobe
Atmosphere, Apple QuickTime VR, There.com and Meet3D are other commer-
cial efforts. These packages and game engines are attractive, but without source

28 C. Jeffery et al.

code it is impossible to customize them to integrate CS programming tools such
as compilers and editors.

There are many 3D research CVE’s, such as MASSIVE (-1/-2/-3)/HIVE
[17][6], and DIVE [4]. These systems have often emphasized the avatars at the
expense of the work people are trying to collaborate on. Instead of taking a
VR-centric view where everything is done in the VR, or the opposite view of VR
as just a weak collaboration tool whose main purpose is to augment reality by
providing awareness of other users [18], Unicron takes the position of augmented
virtuality: the VR models real-world places and activities, and 2D tools are
integrated into the VR where a person would be turning to a computer or other
device (such as a whiteboard) to do some work in the non-VR version of things.
This allows for relatively seamless transitions. As much as possible, “integration”
of 2D tools means bundling their functionality directly into the CVE, rather than
switching to a separate window. For example, the collaborative views of text are
provided by tabs in the CVE Window, to minimize the user’s cognitive context
switching costs, and provide continuity in the overall environment. Text and
voice chat controls are uninterrupted by switching between 3D view and code
view. See Figure 6. Voice chat buttons are upper left (disable, room-mode, and
phone-mode). Text chat in upper right provides context as tabs shift between
3D and 2D main area views. Use of the navigation bar in lower left varies with
the current mode.

Some of CVE’s and other VR systems are especially interesting because they
are open source or otherwise publically available, such as University of Manch-
ester’s Maverik [8] (aig.cs.man.ac.uk/maverik/), Planeshift (www.planeshift.it),
VR Juggler (www.vrjuggler.org), or Alice [14]. One related CS education project
that is using Alice is Saint Joseph University’s JABRWOC project, which uses
virtual reality as an instructional domain, as opposed to Unicron’s goal of cre-
ating a virtual community for software development collaborations such as CS
distance education. Another related education project is Viras [15], a CVE for
education built using Active Worlds (www.activeworlds.com). While it is unclear
that Active Worlds is customizable to the extent needed for domain-specific ed-
ucation CVE tasks, it is a tremendous resource for generic CVE construction.

The term “collaborative programming environment” can refer generically to
any tool that assists programmers to work in teams, such as the (asynchronous)
document revision features found in Microsoft Word, or the set of software tools
provided by Source Forge (www.sourceforge.net). The collaborative software de-
sign and programming environment we envision for the virtual community is
more closely related to fully interactive systems from the field of computer sup-
ported cooperative work (CSCW). Similar systems from that domain include
Microsoft’s NetMeeting, NetEdit [21], RECIPE [19], and others. Among 2D col-
laborative tools, CROCODILE is especially related, as it provides a virtual aca-
demic enterprise rendered as hypertext 2D graphs [13]. The CSCL community
is also actively exploring uses of 3D environments as educational tools [9]. We
are not aware of any systems that integrate a collaborative programming envi-
ronment into an immersive 3D virtual environment as is the case for Unicron.

A Framework for Prototyping Collaborative Virtual Environments 29

Fig. 6. Integrated view of the IDE and CVE

7 Experience Gained

Quantitative evaluation of Unicron is ongoing and will be the subject of another
paper. Anecdotal experiences learned fall into categories, including (a) expe-
riences building the NSH CVE, (b) discoveries about hardware and software
limitations of current mainstream platforms that pertain to CVE applications,
and (c) experiences in the integration of domain-specific instructional tools.

The claimed ease of use of the programming language Unicon used to build
the Unicron framework has been validated by developer experiences, with
caveats. A group of average Master’s students were able to learn Unicon and
then build, with direction from faculty, both the CVE framework/tools and the
working CVE described in this paper. However, the high-level language does
not substitute or solve issues of code quality or software engineering, all it does
is pose fewer lines of code for instructors or peers to have to code review and
debug. Naive student code that works for a few users is different from expert
code that runs well for many users.

Many experiences running the CVE have proven useful and occasionally sur-
prising. As expected, performance has been an issue, especially in scaling to

30 C. Jeffery et al.

larger numbers of users. However, the relatively slow speed of the very high-level
language has not been the issue it was expected to be, because CVEs are heavily
I/O bound. Because of this, both the client and the server had to be rewritten
the same way: in both cases a simple event-driven I/O multiplexor had to be
changed to a batch/step processor that minimized the number of interactions
with the operating system by processing all input prior to sending all output for
each step. This change alone scaled our system from handling 4 users to handling
26 users on midrange Pentium 4 hardware.

We expected the server written in Unicon to be the bottleneck, but found
that the server written in a very high level language has not been a problem;
server load has seldom exceeded 10% and is generally far less. The CVE built
using this framework remains I/O bound, but the network is not the problem
any more: current scalability is limited by clients’ graphics rendering code, dom-
inated by VM runtime system OpenGL code written in C. Scaling to hundreds
of simultaneous users in the same virtual classroom will involve reducing the
graphics rendering cost they impose on each other, for example by abstracting
groups of far-away users, and disabling their ability to “distract” each other with
individual movements. We found the hard way that wireless internet technologies
perform substantially worse than wired technologies for such collaborative tools,
corroborating reports from gamers. This is unfortunate since NMSU’s electronic
classroom is equipped with wall-to-wall wireless laptop machines.

Our experiences integrating domain-specific tools are modest so far. Direct
integration of the text editor widget and supporting network code for the collab-
orative IDE was fairly straightforward. Integrating command-line and textual
tools is abstracted by means of pseudo-terminals running inside editor widgets.
However, many of the tools we wan to integrate involve graphical user interfaces
and require either reimplementation as a collaborative tool or else they must be
open enough to be extended enough to talk to our framework using a mechanism
such as [16] [5].

8 Conclusions and Future Work

On the positive side, in rapid prototyping a collaborative virtual environment
with Unicron, we were amazed at the ease with which the smoothly animated
first-person view of the environment was developed, initially in 300 lines or
so. The multi-user interaction capabilities came together similarly rapidly and
simply; our first n-user chat client and server were less than 200 lines of code.

Forseeably but inconveniently, to go from a floor plan and digital camera
images to a working prototype virtual environment of an entire building or more
requires more sophisticated tools for texture management automation. Texture
management (reducing the size of textures, making them tile nicely, etc.) is a
seemingly straightforward process that should be automatable by many methods,
but most tutorials on the subject advocate texture manipulation by hand using
a tool such as the Gimp, or PhotoShop [1]. The Gimp is great, but building a
virtual world requires a lot of textures. We implemented some simple automated

A Framework for Prototyping Collaborative Virtual Environments 31

tools based on techniques described by Bourke [3] and are working on further
refinements.

The Unicron platform is highly suitable for quickly prototyping CVEs that
work well for a modest number of simultaneous users, such as the class sizes of
5-30 that we anticipate using it for. We are gradually improving it to scale to
larger numbers of users, but we have not applied the kind of hardware or software
engineering resources that go into commercial games that handle hundreds or
thousands of users.

Our future efforts include: splitting master server responsibilities across mul-
tiple machines to improve scalability; refinement and packaging of open source
world-building tools; implementing well-known higher performance graphics al-
gorithms to improve rendering; collaboration support for additional CVE do-
mains and other academic disciplines; and performance tuning and fault resis-
tance, especially to network fluctuations.

Acknowledgments

Joe Pfeiffer developed our electronic classroom’s whiteboard application, with a
Linux device driver written by Mike Wilder. Numerous students assisted with
early Unicron development; Wynn Winkler and Nolan Clayton developed note-
worthy prototypes. This work was supported in part by the New Mexico Alliance
for Minority Participation, and by NSF grants EIA-0220590, EIA-9810732, and
DUE-0402572.

References

1. anonymous. Making Tilable & Seamless Textures. HighPoly3D.com, 2005.
2. D. Bauer, S. Rooney, and P. Scotton. Network infrastructure for massively dis-

tributed games. In Proceedings of the 1st Workshop on Network and System Support
for Games, NetGames 2002, pages 36–43. ACM, April 2002.

3. P. Bourke. Tiling Textures on the Plane. Swinburne Centre for Astrophysics and
Supercomputing, Australia, 1992.

4. E. Frecon. Dive: Communication architecture and programming model. IEEE
Communications Magazine, 42(4):Xpp, April 2004.

5. D. Garlan and E. Ilias. Low-cost, adaptable tool integration policies for integrated
environments. In Proceedings of the fourth ACM SIGSOFT symposium on Software
development environments, pages 1–10. ACM, 1990.

6. C. Greenhalgh and D. Snowdon. Hive distribution api. Technical Report, 0:5pp,
November 1997.

7. R. E. Griswold and M. T. Griswold. The Icon Programming Language. Peer to
Peer Communications, San Jose CA, 1997.

8. R. J. Hubbold, X. Dongbo, and S. Gibson. Maverik — the manchester virtual
environment interface kernel. In Proceedings of the 3rd Eurographics Workshop on
Virtual Environments, pages x–x+y, February 1996.

9. R. Hmlinen, P. Hkkinen, S. Jrvel, and T. Manninen. Computer-supported collab-
oration in a scripted 3-d game environment. In Proceedings of CSCL 2005, Taipei,
Taiwan, 2005.

32 C. Jeffery et al.

10. C. Jeffery, A. Dabholkar, K. Tachtevrenidis, and Y. Kim. Programming language
support for collaborative virtual environments. In Proceedings of 18th International
Conference on Computer Animation and Social Agents. CGS, 2005.

11. C. Jeffery, S. Mohamed, R. Pereda, and R. Parlett. Programming with Unicon.
Unicon Project, unicon.sf.net, 2004.

12. N. Martinez and C. L. Jeffery. Unicon 3D Graphics User’s Guide and Reference
Manual. Unicon Technical Report, 9(a):28pp, July 2003.

13. Y. Miao. Design and Implementation of a Collaborative Virtual Problem-Based
Learning Environment. M.S. Thesis, Technical University of Darmstadt, 2000.

14. R. Pausch and colleagues. Alice: A rapid prototyping system for 3d graphics. IEEE
Computer Graphics and Applications, 15(3):8–11, May 1995.

15. E. Prasolova-Frland and M. Divitini. Collaborative virtual environments for sup-
porting learning communities: an experience of use. In Proceedings of the 2003
International ACM SIGGROUP Conference on Supporting Group Work, pages
58–67. ACM, 2003.

16. S. P. Reiss. Connecting tools using message passing in the field environment. IEEE
Software, 7(4):57–66, July 1990.

17. D. Roberts and P. Sharkey. Maximising concurrency and scalability in a consistent,
causal, distributed virtual reality system, whilst minimising the effect of network
delays. In Proceedings of the IEEE WETICE’97, pages x–x+y. IEEE, June 1997.

18. M. Robinson, S. Pekkola, J. Korhonen, S. Hujala, T. Toivonen, and M.-J. O. Saari-
nen. Extending the limits of collaborative virtual environments. Collaborative Vir-
tual Environments: Digital Places and Spaces for Interaction, page XX pp, 2001.

19. H. Shen and C. Sun. Recipe: a prototype for internet-based real-time collaborative
programming. In Proceedings of the Second International Workshop on Collabora-
tive Editing Systems, 2000.

20. J. Smith. Basic Information about MUDs and MUDding (MUD FAQ). Oklahoma
State University Dept. of Math, Oklahoma, OK, 1999.

21. A. Zafer. NetEdit: A Collaborative Editor. M.S. Thesis, Virginia Polytechnic In-
stitute, 2001.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 33 – 48, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptive Distribution Support for Co-authored
Documents on the Web

Sonia Mendoza1, Dominique Decouchant1, Alberto L. Morán2,
Ana María Martínez Enríquez3, and Jesus Favela4

1 Laboratoire “Logiciels Systèmes, Réseaux”, Grenoble, France
{Sonia.Mendoza, Dominique.Decouchant}@imag.fr

2 Facultad de Ciencias, UABC, Ensenada, B.C., Mexico
almys@uabc.mx

3 Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, D.F., Mexico
ammartin@cinvestav.mx

4 Departamento de Ciencias de la Computación, CICESE, Ensenada, B.C., Mexico
favela@cicese.mx

Abstract. In order to facilitate and improve collaboration among co-authors,
working in the Web environment, documents must be made seamlessly avail-
able to them. Web documents may contain multimedia resources, whose man-
agement raises important issues due to the constraints and limits imposed by
Web technology. This paper proposes an adaptive support for distributing
shared Web documents and multimedia resources across authoring group sites.
Our goal is to provide an efficient use of costly Web resources. Distribution is
based on the current arrangement of the participating sites, the roles granted to
the co-authors and the site capabilities. We formalize key concepts to ensure
that system's properties are fulfilled under the specified conditions and to char-
acterize distribution at a given moment. The proposed support has been inte-
grated into the PIÑAS platform, which allows an authoring group to collabora-
tively and consistently produce shared Web documents.

1 Introduction

Distribution concerns the way in which the shared data objects of a groupware appli-
cation are distributed across the cooperating sites. Previous efforts (e.g. [4]) identified
flexible distribution support as an important issue in groupware design and develop-
ment. However, most platforms only support one distribution strategy that is applied
to all data objects of a single application. Some platforms (e.g. [9] [11]) take flexibil-
ity into account for their distribution support, but they are mainly focalized on sup-
porting synchronous work. Consequently, they do not address other important issues
(e.g. persistency) that arise from the need to support disconnected or nomadic work.

In spite of the progress in groupware design and development, only few applica-
tions are globally used. Being the most used application of the Internet, the Web of-
fers a potential as a viable technology for groupware development, deployment and
evaluation [1]. Current research efforts on the Web (e.g. [6]) focus on providing asyn-

34 S. Mendoza et al.

chronous support for document co-authoring. However, these solutions follow a hy-
brid distribution strategy (e.g. centralized data objects and replicated programs) which
makes them difficult to ensure document availability within an unreliable environ-
ment. Moreover, the Web technology also imposes constraints raising important is-
sues of distributed document management (e.g. client site and user identification is
not yet integrated into the access mechanism).

In order to provide an efficient use of costly Web resources, we propose an adap-
tive support for distributing them across co-author sites. Our support takes into ac-
count the current arrangement of the involved sites, the roles granted to the co-authors
and the site storage capabilities. We have integrated this dedicated management ser-
vice into the PIÑAS platform [2], which is suitable for supporting collaborative au-
thoring on the Web. Such autonomous support allows the application developer to
implement different distribution strategies, which are not only applied to a collection
of applications, but also to individual data objects of a single application.

This paper is organized as follows. After discussing related work in Section 2, we
describe our approach for distributing shared Web entities in Section 3. Particularly,
we present the data model of the Web document entity and its components. Then, we
introduce the principles to arrange co-author's sites. Later, we describe how Web
documents and their resources are shared among co-authors and how they are distrib-
uted across their sites. Finally, Section 4 presents conclusions and future work.

2 Related Work

Most groupware platforms support one distribution strategy, which applies to the
whole application. For instance, Rendezvous [7] provides a centralized strategy, while
GroupKit [13] is based on a replicated one. Suite [3] offers a hybrid strategy, which
centralizes the shared data objects and replicates the application programs. Only few
platforms, such as GEN [11] and DreamObjects [9], provide flexible support for dis-
tributing shared data objects, which allows the application developer to implement
different distribution strategies.

By default, GEN offers implementations for centralized and replicated strategies. A
shared data object can be represented as a proxy or replica in order to respectively
implement a centralized or replicated data object. By means of the open implementa-
tion technique [8], this platform allows the developer to specify how a shared data
object is distributed and maintained consistent.

DreamObjects provides replicated, asymmetric and adaptive strategies. In contrast
to the centralized strategy, the asymmetric strategy does not require a well-known
server. The adaptive strategy dynamically changes the distribution characteristics of
shared data according to the user working style. By applying the substitution princi-
ple, this platform allows the developer to specify the distribution and consistency
strategies of a shared data object at runtime. Although GEN and DreamObjects target
on providing several distribution strategies, they are mainly concerned with synchro-
nous work support. Consequently, they do not address other important issues (e.g.
persistency and access control) that arise from the need to support disconnected work.

 Adaptive Distribution Support for Co-authored Documents on the Web 35

Additionally, document managers like Lotus Notes [14], Bayou [5] and DOORS [12]
support asynchronous work. However, even when these systems take persistency
support into account, they are constrained to follow a replicated strategy. Except for
Lotus Notes, none of the previous platforms is well adapted for the Web.

Current research efforts, such as WebDAV [6] and BSCW [1], focus on providing
functions for accessing and publishing Web documents on remote servers. Users are
able to lock documents, to get and modify them, and finally to send them back to the
server. However, these functions are only designed for a hybrid strategy, which makes
them difficult to guarantee document availability within an unreliable environment
(e.g. Internet).

We aim at going a step further by proving an efficient use of shared multimedia re-
sources. Our platform offers an adaptive distribution support which takes into account
important issues, such as storage capabilities, authoring roles and current arrangement
of the cooperating sites. These issues arise from the need to support collaborative
work in disconnected and nomadic mode on the Web environment. Nevertheless, they
have not been previously addressed by other platforms in a comprehensive way.

3 Distribution of Shared Web Entities

In this section, we formally define the underlying concepts and relations of our ap-
proach for distributing shared Web entities1. First, we present the data model of the
Web document entity and its components. Then, we introduce the underlying princi-
ples to arrange co-author's sites and characterize the distribution of a document across
co-author sites. Afterwards, we present the phases of the distribution protocol. Fi-
nally, we describe how Web documents and their resources are shared among co-
authors and how they are distributed across their sites.

3.1 Data Model of Shared Web Entities

A Web document entity consists of one or more fragment entities. In turn, a fragment
entity can refer to multimedia resource entities. A document has to hold at least one
fragment, while a fragment may not include any resources. A fragment can belong to
a document only once, and similarly a resource can be a member of a fragment only
once. The Document-Fragment and Fragment-Resource relations are refined as fol-
lows. Let D denote the set of Web documents and H represent the set of fragments.
Allow F to designate an injection from D to ((H)\{∅}) such that, for every docu-
ment d ∈ D, the F(d) set contains the component fragments. On the other hand, let I
be the set of multimedia resources. The E function, such that E ∈ H → (I), maps a
fragment to a set of resources. Therefore, for every fragment f ∈ H, the E(f) set holds
the resources referred by the fragment. The F and E mappings are defined using dif-
ferent types of binary relations as two different documents can not maintain the same
total sequence of fragments. However, two distinct fragments may contain common
resources.

1 Refer to appendix A for the formalization notation.

36 S. Mendoza et al.

An entity consists of a set of properties and a body (see Fig. 1). In turn, a body
holds a sequence of hypertext links to other entities. A document body maintains a
HTML, XHTML or XML description about a sequence of fragment references. Simi-
larly, a fragment body holds a description about a sequence of resource references. At
creation time, a document just consists of one fragment, whose body can be initialized
with a possible empty description. A resource body can contain MIME types, e.g. a
"GIF/JPEG" image, a "basic/tone" audio or a "MPEG/pointer" video, etc.

Real entity

Property

Proxy

Link
n

Body
{ordered}

1

1 1

n 1

Representation

Fragment
proxy

Resource
proxy

Document
proxy

Real
fragment

Real
resource

Real
document

Entity

1
1

n1..n

1

1

Document

Fragment

Resource

Fig. 1. Representations of the document, fragment and resource entities

The data model supports two types of representations at the local site, proxy and
real entity, which permit the application developer to respectively implement central-
ized o replicated data objects. Representing an entity as proxy allows to remotely
refer to it. Conversely, creating a real entity allows it to be locally referenced. The
main difference between these representations resides on the entity body: a real entity
actually holds a body, while a proxy just comprises a reference to the body.

3.2 Arrangement of Co-author Sites

We distinguish a working site from a storage site to carry out distribution of co-
authored documents [10]. A working site is an end-user computer, running PIÑAS-
based applications and possibly standard Web applications, where an author consults
and modifies documents. A storage site is a Web server host, running PIÑAS-based
services, where documents are stored. The Author-Storage Site and Author-Working
Site relations are defined as follows. Let A be the set of authors, SS represent the set of
storage sites hosting PIÑAS services and WS denote the set of working sites running
PIÑAS applications. The S function, such that S ∈ A → ((SS)\{∅}), maps an author
to a non-empty set of storage sites. Similarly, the W function, such that W ∈ A →
((WS)\{∅}), maps an author to a non-empty set of working sites. Hence, for every

 Adaptive Distribution Support for Co-authored Documents on the Web 37

author a ∈ A, the S(a) and W(a) sets respectively contain his available storage and
working sites. According to the S and W functions, several authors can share a work-
ing and/or storage site. Moreover, a single site can act both as a storage and a working
site in order to allow collaborative autonomous work in a degraded mode.

The multi-site author principle stated above allows authors to work in nomadic
mode. An author can establish alternative connections to/from different pre-specified
sites as he/she moves. Thus, he/she is able to transparently work on his/her documents
from different sites, and dynamically retrieve his/her working environment at any
moment. Based on this principle, we specify a first level of nomadic work features by
relating a working site to a set of storage sites. Formally, the Ta function, such that Ta
∈ W(a) → ((S(a))\{∅}), maps a working site to a non-empty set of storage sites.
Therefore, for every working site w ∈ W(a), the Ta(w) set holds the storage sites that
can handle requests from author a working at the w site.

The following scenario illustrates these concepts (see Fig. 2): authors, Ray, Beth,
Kurt and Saul, dispersed around the world, have several working and storage sites at
their disposal. Ray can produce/consult documents on the progreso.mx, koln.de and
versailles.fr working sites and download/upload them from the cancun.mx, bavaria.de
and louvre.fr storage sites. Ray’s sites are located in different countries, i.e. Mexico,
Germany and France, to allow him to work in nomadic mode. Based on his current
physical location, e.g. progreso.mx, he can access documents from a close site, e.g.
cancun.mx, using a more reliable environment.

According to the W, S and Ta functions, Ray’s working and storage sites and the re-
lations between these sites are defined as follows:

− W(Ray) = {progreso.mx, koln.de, versailles.fr}
− S(Ray) = {cancun.mx, bavaria.de, louvre.fr}
− TRay = {(progreso.mx, cancun.mx), (koln.de, bavaria.de), (versailles.fr, louvre.fr)}

Such an arrangement provides Ray with high availability of his documents by dis-
tributing them across several sites. As depicted by the gray shadow, he can rely on an
infrastructure that automatically distributes documents to make them available during
a working session and to persistently store them. In addition to these features, the
underlying infrastructure ensures that Ray’s documents will be updated and kept con-
sistent, even in an unreliable environment (e.g. Internet). Moreover, different authors’
working sites, e.g. Ray’s site, versailles.fr, and Beth’s site, orsay.fr, can
download/upload documents from a common storage site, e.g. louvre.fr. Thus, several
authors located in relatively close places (e.g. in the same LAN) can share site capa-
bilities (e.g. storage). Finally, the tulum.mx site can simultaneously act as working and
storage site to allow Saul to work in an autonomous way.

An author can have several Web documents, which are organized into a documen-
tation base. We formally define the Author-Document relation as follows. The B func-
tion, such that B ∈ A → (D), maps an author to a set of documents. Hence, for every
author a ∈ A, the B(a) set contains his documents. According to the B function, a
documentation base may be empty at a given moment (e.g. at author’s registration
time). Moreover, different author’s bases can contain common documents in order to
allow document sharing. Private documents are stored in the owner author’s sites,
while shared documents also are saved in those of his colleagues.

38 S. Mendoza et al.

LAN

INTERNET

LAN

Ray

Ray

Ray

Kurt

Beth

Beth

Saul

cancun.mx

bavaria.de louvre.fr

versailles.fr

koln.de
tulum.mx

LAN

- Document sharing
- Document distribution/replication
- Automatic diffusion
- Automatic updating

berlin.de

progreso.mx merida.mx

orsay.fr

Fig. 2. A typical arrangement of co-author sites

3.3 Characterization of Document Distribution

A document is private and belongs to its creator at creation time. However, a docu-
ment could be distributed across several sites, in order to make it available during a
working session and to persistently store it in a reliable way. To formally define the
distribution scope of a document, let DR and DP respectively denote the sets of
document replica and proxy representations. As we previously defined, D designates
the set of documents. Allow R to be a bijection from D to DR such that, for every
document d ∈ D, the R(d) element represents the document replica. Similarly, let P
denote a bijection from D to DP such that, for every document d ∈ D, the P(d) ele-
ment represents the document proxy.

On the other hand, let a and d respectively denote an author and a document, such
that a ∈ A and d ∈ D. Also, suppose that d ∈ B(a), i.e. author a creates the d docu-
ment. In this way, the d document belongs to the B(a) documentation base available
to author a. As the document owner, author a has all the access rights on the d docu-
ment, while any other author a’, such that a’ ∈ A and a’ ≠ a, has no access rights.
Finally, consider that author a has the S(a) set of storage sites and the W(a) set of
working sites at his disposal.

Based on the previous definitions, a snapshot of the document after distribution can
be expressed as follows. The {R(d)}×S(a) Cartesian product denotes the distribution
scope of the d document across the storage sites of author a. The (R(d), s) pair, such
that (R(d), s) ∈ {R(d)}×S(a), indicates a R(d) replica that is persistently created at the
storage site s ∈ S(a). Similarly, the {R(d)}×W(a) Cartesian product denotes the distri-
bution scope of the d document across the working sites of author a. The (R(d), w)
pair, such that (R(d), w) ∈ {R(d)}×W(a), designates a R(d) copy that is temporarily
created at the working site w ∈ W(a).

To exemplify these expressions, allow us to consider a scenario in which Ray pro-
duces the report document on the progreso.mx working site. As mentioned earlier,

 Adaptive Distribution Support for Co-authored Documents on the Web 39

Ray has the cancun.mx, bavaria.de and louvre.fr storage sites and the progreso.mx,
koln.de and versailles.fr working sites at his disposal. According to the {R(d)}×S(a)
and {R(d)}×W(a) products, we define the distribution scope of the report document
across Ray’s sites as follows2:

− {R(paper)}×S(Ray) = {(R(paper), cancun.mx), (R(paper), louvre.fr),
 (R(paper), bavaria.de)}

− {R(paper)}×W(Ray) = {(R(paper), progreso.mx), (R(paper), versailles.fr),
 (R(paper), koln.de)}

Thus, a R(report) replica is permanently created at each Ray’s storage site. Such an
organization provides Ray with high availability of his documents. Additionally, a
working copy may be temporarily created in cache at his current working site, e.g.
progreso.mx, in order to allow Ray starting management or authoring tasks. In this
way, rapid feedback at the user interface level is achieved. Working copies also can
be loaded to the koln.de and versailles.fr working sites, whenever Ray aims at con-
sulting or modifying the document contents.

3.4 Phases of the Distribution Protocol

Identification and location of co-author sites are important issues when designing a
distribution protocol. To overcome them, we use the author definition entity [2]. For
every author a, such that a ∈ A, it holds the S(a) and W(a) sets of storage and working
sites available to him/her and the Ta set of relations among these sites. The author
definition for author a is replicated in all sites contained in the S(a) and W(a) sets.
Following the evolution of this entity (i.e. site creation, modification or destruction),
the replicas are steadily updated.

Each time an author starts a session at one of his/her working sites, the distribution
support determines from his/her local author definition the storage sites from where
documents can be downloaded. During this connection phase, the author definition
can be updated at the current working site. Also, the distribution support relies on a
two phase protocol to carry out document distribution across co-author sites. The first
phase concerns the interaction between a working site and a storage site, while the
second phase involves the interaction among storage sites. Formally, we describe the
phases of the distribution protocol as follows.

Let a and d respectively denote an author and a document, such that a ∈ A and d ∈
D. Consider that d ∈ B(a), i.e. author a creates the d document. Let w and s respec-
tively represent a working site and a storage site available to author a, such that w ∈
W(a) and s ∈ S(a). Finally, suppose that s ∈ Ta(w), i.e. the s site can handle requests
from author a working at the w site.

Phase 1. Request for creating a document. An application at the w site sends the
system at the s site a request for creating the d document. Then, the system creates a
R(d) replica of the d document at the s site. Before starting Phase 2 to distribute the
d document across the S(a)\{s} storage sites of author a, the system at the s site
sends an acknowledgement to the application at the w site. If needed, a working

2 Bold caption means actual distribution while normal caption signifies potential distribution.

40 S. Mendoza et al.

copy may be temporarily created at the w site. In this way, author a is allowed to
immediately work on the d document without concerning him/her about distribution
issues.

Phase 2. Distribution of a document entity. The system at the s site takes charge of
distributing the d document across the involved sites. Thus, it obtains two pieces of
information from the R(d) replica at the s site. The first piece consists of the S(a)\{s}
storage sites the d document would be distributed to. The second piece holds the type
of representation (i.e. replica or proxy) to be created in those sites. By default, a tem-
poral working copy (i.e. valid for a working session) is created at a working site,
while either a persistent replica or proxy can be created at a storage site. Using these
information, the system at the s site asks its pairs at the S(a)\{s} sites to create a rep-
lica of the d document. Then, they create a R(d) replica at their respective sites and
send an acknowledgement to the system at the s site.

Even if every storage site can carry out the distribution of document state changes,
the R(d) persistent replica at the s site does not have to explicitly refers to the other
persistent replicas {R(d)}×(S(a)\{s}). Similarly, as the w working site is related to the
Ta(w) set of storage sites, the temporal working copy at the w site does not have to
keep references to the persistent replicas {R(d)}×(S(a)∩Ta(w)). In contrast, the distri-
bution protocol relies on the notion of author definition to locate both working copies
and persistent replicas. In this way, every copy or replica points to the author defini-
tion held in the local site. Furthermore, every w’ working site, such that w’ ∈ W(a)
and w’ ≠ w, will know about the new document d when author a sets-up an applica-
tion at this site. At set-up time, the application can ask the system at the site s’ ∈
Ta(w’) information about the d document and create a working copy at the w’ site if
needed.

To illustrate the distribution protocol phases, let us use a scenario concerning the
creation of the report document previously mentioned. In Phase 1, author Ray
working at the progreso.mx site asks the groupware application to create the report
document (see Fig. 3). Subsequently, the application inspects the local author defi-
nition to identify the storage site(s) that can handle its requests (step 1). According
to the TRay function, the progreso.mx working site is related to the cancun.mx stor-
age site. In this way, the application forwards the request to the system at the can-
cun.mx site (step 2). In turn, it creates a replica (R(report), cancun.mx) and sends an
acknowledgment to the application (step 3). Then, a working copy is temporarily
created in Ray’s cache to allow him immediately managing or working on the docu-
ment (step 4). In Phase 2, the system at the cancun.mx site is responsible for dis-
tributing the report document. Thus, it first examines the local author definition,
belonging to Ray, in order to determine the storage sites the document is to be dis-
tributed to (step 5). According to the S function, the S(Ray) set contains the storage
sites available to Ray. The system at the cancun.mx site asks its peers at the bava-
ria.de and louvre.fr sites to create a replica of the report document (step 6). Finally,
they create a replica at their corresponding sites and then send an acknowledgment
to their peer at the cancun.mx site (step 7).

 Adaptive Distribution Support for Co-authored Documents on the Web 41

P
ha

se
 1

P
ha

se
 2

2. createDoc(...)

ack

6. distributeDoc(...)

Ray

cancun.mx bavaria.delouvre.frprogreso.mx

ack

3. createPerRep(...)

ack

7. createPerRep(...)

7. createPerRep(...)

1. getAddress(...)

4. createTemCopy(...)

5. getAddress(...)

Fig. 3. Phases of the distribution protocol

The replica (R(report), louvre.fr) does not have to keep an explicit reference to the
replica (R(report), bavaria.de) and vice-versa. Similarly, they do not need to know
about the replica (R(report), cancun.mx) and vice-versa, as the local author definition
holds the set of storage sites where persistent replicas can be maintained. Like persis-
tent replicas, the temporal working copy at the progreso.mx site refers to the local
author definition, instead of holding a reference to the persistent replica at the can-
cun.mx site. In this way, if the network connection between the progreso.mx and can-
cun.mx sites fails or the cancun.mx site fails, then the louvre.fr site can handle re-
quests concerning the report document.

3.5 Sharing a Web Document Entity

In order to allow several authors to concurrently work on a shared document, our
approach relies on document fragmentation and role granting. A fragment can be
recursively divided to form new fragments, according to the document logical struc-
ture. The number of fragments can vary from one document to another, depending on
the requirements of the authoring group. In this way, authors can access document
fragments in accordance with their access rights. AllianceWeb [2] is a PIÑAS-based
application that supports both document fragmentation and access rights granting by
means of roles.

To share a document with other authors, the document owner has to form an au-
thoring group. Formally, group composition can be defined as follows. Let suppose
that author a ∈ A decides to share his document d ∈ B(a) with some of his colleagues.
The Ca set contains the colleagues of author a, such that Ca ⊆ (A\{a}). Thus, author a
can form the authoring group G from his group of colleagues Ca. He can be also in-
cluded in the authoring group. Hence, the expression G\Ca = {a} defines the relation

42 S. Mendoza et al.

between the authoring group G, including author a, and his group of colleagues Ca.
Otherwise, the expression G ⊆ Ca defines such a relation.

Allow to suppose that author a ∈ G breaks up document d ∈ B(a) into multiple
fragments. Let R denote the set of roles. Author a grants a role r ∈ R on every frag-
ment f ∈ F(d) to the members of the authoring group G. The MId function, such that

MId ∈ F(d) → (G R), maps a fragment to a set of author-role pairs. Therefore, for
every f fragment, the MId(f) set contains author-role pairs. The (a, r) pair, such that
(a, r) ∈ MId(f), indicates that author a can play the r role on the f fragment.

To exemplify these concepts, suppose that Beth, Kurt and Saul are Ray’s col-
leagues. As Ray decides to share the report document with Beth and Saul, he creates
the corresponding authoring group. Then, he breaks up the report document in three
fragments, f1, f2 and f3, and grants roles to the group members. According to the Md
function, Ray defines the following access control sets for each fragment of the report
document:

− Mreport(f1) = {(Beth, reader), (Saul, reader), (Ray, writer)}
− Mreport(f2) = {(Beth, reader), (Saul, writer), (Ray, reader)}
− Mreport(f3) = {(Beth, reviewer), (Saul, null), (Ray, writer)}

Beth and Saul are allowed to read fragment f1 and Ray may write it. Concerning
fragment f2, Saul is permitted to write it, while Beth and Ray may read it. Finally, Saul
does not have any access rights on fragment f3, while Beth and Ray may review and
write it, respectively.

As mentioned in Section 3.1, a fragment can refer to multimedia resources by
means of hyperlinks. Thus, the referenced resources can by default inherit the access
control definition of the referencing fragment. However, the access rights on its re-
sources can be redefined in order to increase the co-authoring concurrency on a frag-
ment. Let us formally define these concepts as follows. Let E(f) denote the set of
multimedia resources referenced by the f fragment. The Nf function, such that Nf ∈
E(f) → {Md(f)}, maps a resource to the access control set Md(f), which contains the
author-role pairs for the f fragment. Hence, the Nf(e) set denotes the access control
definition for every resource e ∈ E(f). To illustrate these concepts, suppose that some
fragments of the report document refer to multimedia resources. Fragment f1 refer-
ences the image and audio resources, while fragment f3 includes a video resource. As
for fragment f2, it does not refer to any. In this way, the image and audio resources
inherit the access control definition of f1 (i.e. the Mreport(f1) set) while the video inher-
its that of f3 (i.e. the Mreport(f3) set). In accordance with the Nf function, the access
control definitions of these multimedia resources are defined as follows:

− Nf1(image) = {(Beth, reader), (Saul, reader), (Ray, writer)}
− Nf1(audio) = {(Beth, reader), (Saul, reader), (Ray, writer)}
− Nf3(video) = {(Beth, reviewer), (Saul, null), (Ray, writer)}

According to the access control sets, Mreport(f1), Nf1(image) and Nf1(audio), only
Ray is authorized to modify the f1 fragment as well as the image and audio resources,
while Beth and Saul may read and visualize them. As for the f3 fragment and the video
resource, Beth and Ray can respectively review and modify them, while Saul does not
have any access rights in accordance to the access control sets, Mreport(f3) and

 Adaptive Distribution Support for Co-authored Documents on the Web 43

Nf3(video). However, authoring concurrency on the f1 fragment can be increased by
redefining the sets Nf1(image) and Nf1(audio). For instance, Ray still might modify the
f1 fragment, while Beth would be allowed to change the image resource and Saul
might modify the audio resource. Even more, Ray might not have any access rights on
the audio resource.

3.6 Distribution of Multimedia Resources

An initialization phase has to be performed among the group members, before starting
redistribution of the report document across the group sites. During this phase, the
author definition of each member is exchanged and persistently stored in the working
and storage sites of the group members. Replicas of Ray’s author definition are dis-
tributed across the sites of Beth and Saul and vice-versa. In this way, each member
can have an alternative connection to another site and work with shared and distrib-
uted documents in a dynamic and transparent way.

As soon as distribution of the report document is finished, it is available at Ray’s
storage sites (i.e. cancun.mx, bavaria.de and louvre.fr) as well as at those of Beth (i.e.
cancun.mx and louvre.fr) and Saul (i.e. cancun.mx and tulum.mx). Although co-
authors share common storage sites (i.e. cancun.mx) just one replica of the report
document is maintained in those sites. In order to collaboratively co-author the report
document, a working copy is stored in Ray’s cache at his working sites (i.e. pro-
greso.mx, koln.de and versailles.fr) and at those sites available to Beth (i.e. merida.mx
and orsay.fr) and Saul (i.e. tulum.mx).

Working copies and replicas of multimedia resources also are distributed across
the group storage and working sites. However, proxies can be created at those sites in
order to save local storage space. Decisions about creating either a replica or a proxy
depend on the access rights granted to the corresponding author on the resource. Let
us formally define these concepts as follows. As previously mentioned, the S and W
functions respectively map an author to a set of storage sites and to a set of working
sites, while the G set denotes the authoring group. Therefore, the S[G] and W[G] sets
respectively represent the group’s storage and working sites from/to where the d
document can be loaded/distributed. On the other hand, let SPe and SRe respectively
denote two subsets of the group’s storage sites S[G], where the e resource can be
created as proxy and as replica depending on the access control set Nf(e). If pair (a, r)
∈ Nf(e) specifies that author a ∈ G is allowed to play a role r ∈ R, which completely
denies access to the e resource, then a proxy will be distributed across his storage sites
S(a). Otherwise, a replica will be created at those sites.

In order to determine the distribution scope of proxies and replicas, let us sup-
pose that all access rights on the e resource are disabled for the r role. Expressions
(1) and (2) define the sets of storage sites, SPe and SRe, where proxies and replicas
of the e resource respectively can be created. Further, let us to consider that two
authors share a common storage site and one of them has access rights on a given
resource, while the other does not. Such situation causes a representation ambiguity,
as the resource must be distributed across the storage sites both in replica and proxy
forms. To solve the ambiguity, a replica rather than a proxy will be created to en-
sure availability:

44 S. Mendoza et al.

SPe = S [G ∩ Nf (e) –1 [{r}]] (1)

SRe = S [G ∩ Nf (e) -1 [R \ {r}]] (2)

To illustrate the expressions (1) and (2), let us use a scenario (see Fig. 4). Concern-
ing the image resource, replicas are distributed across the group storage sites (i.e.
cancun.mx, tulum.mx, louvre.fr and bavaria.de), as the group members have the right
to access them. Conversely, proxies for the audio resource would be distributed
across Ray’s sites (i.e. cancun.mx, bavaria.de and louvre.fr) because he does not have
any access rights. However, as Beth shares the cancun.mx and louvre.fr storage sites
with Ray and she does have access rights on the audio resource, replicas rather than
proxies are created at those sites. Similarly, proxies for the video resource would be
distributed across Saul’s storage sites (i.e. cancun.mx and tulum.mx) as he does not
have any access rights. Nevertheless, as Beth and Ray share the cancun.mx storage
site with Saul and they do have access rights on the video resource, a replica rather
than a proxy is created at this site. The distribution scope of the image, audio and
video resources across the group’s site can be determined as follows:

− SPimage = {∅}
− SRimage = {cancun.mx, tulum.mx, louvre.fr, bavaria.de}
− SPaudio = {bavaria.de}
− SRaudio = {cancun.mx, tulum.mx, louvre.fr}
− SPvideo = {tulum.mx}
− SRvideo = {cancun.mx, louvre.fr, bavaria.de}

By distributing resources according to the author access rights, replicas of possible
costly multimedia resources are created at the storage sites, whose users have access
rights on them. Otherwise, a proxy is persistently kept in order to save storage space.

replica

proxy

bavaria.de

image

audio

video

R(report)

progreso.mx

image

audio

video

Ray

tulum.mx

image

audio

video

R(report) image

audio

video

cancun.mx

R(report)

louvre.fr

image

audio

video

R(report)

working
copy

Fig. 4. Distribution of shared multimedia resources

 Adaptive Distribution Support for Co-authored Documents on the Web 45

Additionally, working copies or proxies for resources can be distributed across work-
ing sites. A copy can be temporarily created at his current working site, if the author
rights authorize him/her to access the resource. In this way, the author can be pro-
vided with rapid feedback at the user interface. Instead, a proxy is created. Moreover,
when an author (e.g. Ray) has access rights on costly resources (e.g. video) but he can
not actually access them due to device constraints (e.g. a PDA with limited storage
space), temporal proxies rather than copies are created in the cache at his current
working site (e.g. progreso.mx), even if replicas are held in his storage sites (e.g.
cancun.mx, bavaria.de and louvre.fr).

3.7 The PIÑAS Platform

The PIÑAS platform [2] provides support to collaboratively and consistently produce
shared documents in the Web environment. It is based on a client/server architecture,
whose server side consists of three main layers (see bottom block of Fig. 5). The bot-
tom layer offers a set of HTTP-based proprietary communication functions. The mid-
dle layer contains the collaborative entities offered by the platform, as well as their
management services. And finally, the top layer provides a synchronous API (Appli-
cation Program Interface) to access these services.

HTTP-based Communication Layer

Document
Service

Author
Service

Session
Service

Project
Service

Synchronous API

Document
Client

Asynchronous API

s
e
r
v
e
r

s
i
d
e

c
l
i
e
n
t

s
i
d
e

Netscape

Inference
Engine

Author
Client...

AllianceWeb

Communication Assistant

Fig. 5. Architecture of the PIÑAS platform

To support collaboration among co-authors, the PIÑAS platform manages different
types of entities, such as Author, Document, Project, Application and Session. Author
entity manages information allowing to identify a collaborator at the system and so-
cial levels. Author identification allows to grant access rights to a collaborator, to
determine his/her contributions and to coordinate his/her actions. Document entity

46 S. Mendoza et al.

represents a Web document shared by an authoring group. It can contain other entities
such as fragments and multimedia resources. Project entity maintains the Author and
Document entities involved in a collaborative endeavor. Application entity allows
authors to know the status (e.g. presence, availability, etc.) of other au-
thors/documents and to collaboratively work on a document. Finally, Session entity
handles information about the Author and Document entities (i.e. Project entity) asso-
ciated to an Application entity.

The top block of Figure 5 separates the applications interacting with the platform
through the synchronous API (server side) from those interacting by means of the
asynchronous one (client side). Applications use the asynchronous API when they
lack of communication support to interact with the platform services. The assistant
module carries out all communications with the synchronous API, while the entity
modules at the client side accomplish function calls of the corresponding modules at
the server side. The PIÑAS platform supports three types of applications: PIÑAS-
based groupware applications (e.g. AllianceWeb), standard Web browsers (e.g. Net-
scape) and dedicated applications (e.g. inference engine tool). Particularly, standard
Web browsers have limited access to the platform entities and services.

4 Conclusions and Future Work

Being the most used work environment of the Internet, the Web provides a potential
as a viable technology for groupware development, deployment and evaluation. In
order to support an efficient use of costly resources, an adaptive support for managing
them is required. Most Web-based platforms offers only a distribution strategy which
applies to all objects of the groupware application. Out of the Web environment, only
few platforms allowing synchronous work propose flexible distribution supports. To
overcome these limitations, we proposed an adaptive approach for distributing shared
Web documents and resources across the involved sites. Distribution is carried out
according to the current arrangement of co-author sites, the site storage capabilities
and the co-author roles. Documents and resources can be represented both in replica
and proxy form to achieve an efficient use of costly resources. In order to support
collaborative work in disconnected mode, our approach is based on the multi-site
author principle, which relates an author with several working and storage sites. Addi-
tionally, associations among working and storage sites can be established to provide a
first level support for nomadic work. In this way, authors can dynamically and trans-
parently transfer their working environment from one place to another.

There are still some open issues. We aim at providing flexible support for manag-
ing consistency of shared document bases. Our current approach allows two or more
authors to potentially play roles that authorize them to concurrently modify a single
resource contents. For controlling concurrency, a pessimistic strategy based on one
master and many slave copies is used. However, when resources are shared among
several documents produced by different authoring groups, this strategy seams restric-
tive. We also aim to support automatic and dynamic determination of neighboring,
reliable and efficient storage sites. Thus, a working site can get documents from the
closest, more efficient and reliable storage site of those sites at its disposal. Another

 Adaptive Distribution Support for Co-authored Documents on the Web 47

important issue concerns the adaptive support for updating and propagating a docu-
ment state changes, by automatic integration of all contributions.

Acknowledgments. This work is supported by ECOS/ANUIES project M03M01.

References

1. W. Applelt, WWW Based Collaboration with the BSCW System, In Proc. of the 26th
Conference on Current Trends in Theory and Practice of Informatics (SOFSEM’99),
Springer, LNCS 1725, pp. 66-78, Milovy (Czech Republic), Nov. 26-Dec.4 1999.

2. D. Decouchant, J. Favela, and A. M. Martínez, PIÑAS: A Middleware for Web Distrib-
uted Cooperative Authoring, In Proc. of the 2001 Symposium on Applications and the
Internet (SAINT'2001), pp. 187-194, IEEE Computer Society, San Diego, CA (USA),
January 2001.

3. P. Dewan and R. Choudhary, A High-Level and Flexible Framework for Implementing
Multi-user Interfaces, ACM Transactions on Information Systems, 10(4):345-380, 1992.

4. P. Dourish, Using Metalevel Techniques in a Flexible Toolkit for CSCW applications,
ACM Transactions on Computer-Human Interaction, 5(2):109-155, June 1998.

5. W. K. Edwards, E. D. Mynatt, K. Petersen, M. J. Spreitzer, D. B. Terry and M. M.
Theimer, Designing and Implementing Asynchronous Collaborative Applications with
Bayou, In Proc. of the Tenth ACM Symposium on User Interface Software and Technol-
ogy (UIST'97), Alberta (Canada), October 1997.

6. Y. Y. Goland, E. J. Whitehead Jr., A. Faizi, S. R. Carter and D. Gensen, HTTP Extensions
for Distributed Authoring – WebDAV, RFC 2518, February 1999.

7. R. D. Hill, T. Brinck, S. L. Rohall, J. F. Patterson and W. Wilne, The Rendezvous archi-
tecture and language for constructing multi-user applications, ACM Transactions on Com-
puter-Human Interaction, 1(2):81-125, June 1994.

8. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. M. Loingtier, J.
Irwin, Aspect-Oriented Programming, In Proc. of the European Conference on Object-
Oriented Programming (ECOOP’97), Springer-Verlag, LNCS 1241, 1997.

9. S. Lukosch, Adaptive and Transparent Data Distribution Support for Synchronous Group-
ware, In Proc. of the 8th International Workshop on Groupware (CRIWG’2002), Springer-
Verlag, LNCS 2440, pp. 255-274, La Serena (Chile), September 2002.

10. S. Mendoza, D. Decouchant, A. M. Martínez and A. L. Morán, Adaptive Resource Man-
agement in the PIÑAS Web Cooperative Authoring, In Proc. of the Second International
Atlantic Web Intelligence Conference (AWIC’2004), Springer-Verlag, LNAI 3034, pp.
33-43, Cancún (Mexico), May 2004.

11. T. O'Grady, Flexible Data Sharing in a Groupware Toolkit, Master's thesis, University of
Calgary, Department of Computer Science, November 1996.

12. N. Preguia, J. Legatheaux, H. Domingos and S. Duarte, Data Management Support for
Asynchronous Groupware, In Proc. of the ACM Conference on Computer Supported Co-
operative Work (CSCW'00), Philadelphia PA (USA), pp. 69-78, December 2000.

13. M. Roseman and S. Greenberg, Building Real-Time Groupware with GroupKit,, ACM
Transactions on Computer-Human Interaction, 3(1):66-106, 1996.

14. A. S. Tanenbaum and M. Van Steen, Distributed Systems Principles and Paradigms, Pren-
tice Hall, pp. 678-697, USA, 2002.

48 S. Mendoza et al.

Appendix: The Set Notation

Syntax Definition
(W) The power-set of a set W is the set whose members are all the sets whose mem-

bers belong to W.
U V A relation from U to V is a set of pairs constructed from elements of U and V.

p-1 The inverse of a relation p is that relation with each pair of the form (u, v) turned
into the pair (v, u).

dom(p) The domain of a relation p from U to V is the subset of U whose elements are
related to at least one element of V under the relation p.

ran(p) The range of a relation p from U to V is the subset of V whose elements are re-
lated to at least one element of U under the relation p.

p[W] The image of a set W under a relation p from U to V is the subset of V whose
members are the second elements of those pairs of p whose first elements are
members of W.

U V A partial function from U to V is a relation that does not contain two distinct pairs
with the same first element.

U → V A total function from U to V is a partial function from U to V whose domain is U.

U V A partial injection from U to V is a partial function from U to V whose inverse is
a partial function from V to U.

U V A total injection from U to V is a partial injection from U to V and a total function
from U to V at the same time.

U V A partial surjection from U to V is a partial function from U to V whose range is
exactly V.

U V A total surjection from U to V is a partial surjection from U to V and a total func-
tion from U to V at the same time.

U V A partial bijection from U to V is a partial injection from U to V and a partial
surjection from U to V at the same time.

U V A total bijection from U to V is a total injection from U to V and a total surjection
from U to V at the same time.

Agilo: A Highly Flexible Groupware Framework

Axel Guicking, Peter Tandler, and Paris Avgeriou

Fraunhofer IPSI,
Dolivostrasse 15, D-64293 Darmstadt, Germany

{axel.guicking, peter.tandler, paris.avgeriou}@ipsi.fraunhofer.de

Abstract. Today there exist many frameworks for the development of
synchronous groupware applications. Although the domain of these appli-
cations is very heterogeneous, existing frameworks provide only limited
flexibility to integrate diverse groupware applications in a meaningful
way. We identify five variation points that a groupware framework needs
to offer in a flexible way in order to facilitate the integration of diverse
groupware applications. Based on these variation points, we propose a
groupware framework called Agilo that tries to overcome the limited flex-
ibility of existing frameworks by offering multiple realizations of these
variation points and providing a modular architecture to simplify the
integration of applications and the extensibility and adaptability to dif-
ferent application and integration requirements.

1 Introduction

Today there exist many frameworks to support and to simplify the development
of applications for synchronous groupware [1]. While the application domain of
these applications covers a diverse range from simply structured and inherently
conflict-free applications like chats to conflict-rich shared whiteboards and shared
knowledge maps with highly structured data models, the combination of diverse
applications from this domain requires the integration on different levels: user
interface, application logic, and data model.

The difficulties of combining different applications are caused by their use of
different concepts and abstractions, such as different object sharing approaches
and distribution architectures. While there are many groupware frameworks that
provide certain concepts and several frameworks that offer flexibility in some as-
pects, yet, there is no framework that offers enough flexibility to combine very
heterogeneous groupware applications. In addition, different frameworks often
use different domain-specific abstractions, making it hard for application de-
velopers to learn a new framework and difficult for them to combine different
frameworks [2]. The groupware frameworks we developed in the past [3,4] had
a focus on cooperative hypermedia systems, e.g. [5]. Although these frameworks
provide excellent support for modeling complex object structures they are too
heavy-weight to design applications that don’t benefit from using shared objects
with transaction-based conflict management and replication support (such as

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 49–56, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 A. Guicking, P. Tandler, and P. Avgeriou

chats or voting tools). However, many groupware systems benefit from the com-
bination of such simple tools with complex ones, making it necessary to combine
applications with different requirements.

In this paper we present a new Java-based framework called Agilo that seeks
to overcome the shortcomings of existing groupware frameworks with respect to
their limited flexibility. Although Agilo supports application integration on all
above levels, we concentrate on the two latter levels and describe how it provides
the required flexibility by offering multiple realizations of several architectural
commonalities of synchronous groupware applications.

The structure of the rest of this paper is as follows: in section 2 we identify
several variation points common to synchronous groupware applications and how
they are realized in existing groupware frameworks. Section 3 presents how these
variation points are realized in the Agilo framework. The final section 4 concludes
the paper with a short summary as well as the current status of the framework
development and future work.

2 Analysis of Variation Points and Related Work

The diversity of synchronous groupware applications demonstrates that, depend-
ing on the specific application, there are many different requirements for the un-
derlying framework. In this section, we identify five variation points (also called
hot spots [6] or hooks [7]) that represent the aspects of groupware applications
which may differ from one to another. The essential requirement for a group-
ware framework as proposed in this paper is the ability to combine different
manifestations of each of the following variation points on the framework level
in order to be able to combine different groupware applications (Fig. 1). The
identified variation points are a starting point to characterize different types of
groupware applications. A more comprehensive analysis whether the identified
variation points are sufficient requires further research.

Fig. 1. The variation points and important realizations

Agilo: A Highly Flexible Groupware Framework 51

DistributionModel. The first aspect that requires variability is the distribution
model [1]. The two most common forms are Client-Server and Peer-to-Peer. Most
other alternatives can be mapped on a combination of these two approaches [8].

There are many groupware frameworks that support a Client-Server architec-
ture, such as COAST [3] or Rendezvous [9], while others are designed as Peer-to-
Peer systems, e.g. GroupKit [10]1 or DreamTeam [11]. Depending on the usage
context, each approach has benefits and liabilities. While Client-Server reduces
complexity and simplifies consistency issues as well as support for latecomers
[1], Peer-to-Peer avoids having the server as bottleneck and single point of fail-
ure [8,11]. Additionally, Client-Server is more appropriate when using handheld
devices because of their limited resources – the central server then also plays the
role of a storage medium. In some circumstances it might even be better to use
a hybrid approach where some clients communicate mediated by a server while
others form a Peer-to-Peer subgroup [1].

In order to be able to integrate applications that use different distribution
models and to adapt the distribution model of an application to domain-specific
and environmental constraints, it is essential that groupware frameworks allow
flexibility in choosing and adapting the distribution model accordingly.

Communication Infrastructure. The requirements of groupware applica-
tions often influence the selection of the communication infrastructure. This
includes support for different protocols and different marshalling.

Multiple communication protocols must be supported in different application
contexts. For clients running on a LAN, a fast protocol such as TCP or UDP
is sufficient. If the communication must cross firewalls, it might be necessary
to use HTTP or another protocol that firewalls support. Therefore all recent
messaging protocols such as SOAP2 and XMPP3 are defined independently of
the underlying communication protocols.

Similarly, different contexts and applications introduce different requirements
for the data exchange format which we call marshalling, i.e. the transformation
of messages into machine-independent format appropriate for sending through
the network. If large amounts of data have to be transmitted, the marshalling
should be designed to reduce the size of the data, which may include a binary
encoding and compression. On the other hand, if small or heterogeneous devices
are communicating, the marshalling must be designed in a way that allows all
devices to support it. While SOAP and XMPP support different protocols, they
offer an XML-based marshalling only. The COAST framework [3] allows the
use of different marshalling for different clients, but uses a single proprietary
protocol based on TCP.

Sharing Model. For some applications such as a simple chat application, it
is convenient to use messages to inform other clients about application state
1 Although GroupKit relies on a central server called “Registrar” the communication

between the clients is based on a Peer-to-Peer distribution model.
2 http://www.w3.org/TR/soap/
3 http://www.ietf.org/rfc/rfc3920.txt

52 A. Guicking, P. Tandler, and P. Avgeriou

changes. However, applications like a shared knowledge map have a complex
object structure that can be implemented far more easily on top of a higher-
level abstraction than messages, e.g. shared objects.

While messages are transient objects that carry specific semantics such as a
text message in a chat session and that are usually sent only once between two
nodes in a system, shared objects are long-living and often persistent objects
that are manipulated and updated often by different users. Therefore, the access
of shared objects needs to be synchronized in order to avoid data corruption and
inconsistencies (see below). Furthermore, the shared objects are distributed in
the system using a distribution scheme – typical distribution schemes are central,
asymmetric, semi-replicated, and replicated [1].

To free the developer from the burden of implementing concurrency control
strategies and distribution schemes as part of the application the framework
needs to provide an object-sharing abstraction that includes these two aspects.
However, there are two essential requirements: First, the developer must be able
to adapt the different aspects of the sharing model in order to optimize the
use of available resources such as network traffic and performance. Second, the
developer must not be required to use this shared data abstraction at all to avoid
potential performance overhead. Besides, for applications where no conflicts can
occur (such as chats) or that rely on concepts that do not fit to a shared data
abstraction, using shared data is of less value.

Several groupware frameworks directly support sharing of information, such
as COAST [3], Rendezvous [9], and DyCE [4]. However, these systems force the
developer to use the sharing abstraction. GroupKit [10] allows the combination
of both approaches, messages and shared objects.

Concurrency Model. Due to the nature of the domain of synchronous group-
ware each such application has to deal with concurrency issues. To let appli-
cation developers concentrate on the application logic, groupware frameworks
need to make use of an efficient concurrency behavior. This includes the poten-
tially concurrent access of services by different clients as well as the combined
use of asynchronous and synchronous application components without degrad-
ing non-functional quality requirements, such as performance, robustness, and
scalability. With respect to the sharing model the framework has to correctly
resolve the concurrent reception of messages and concurrent manipulation and
access of shared objects, respectively.

For example, DreamTeam provides support for interweaving synchronous and
asynchronous communication using the Half-Sync/Half-Async pattern [11]. The
COAST server uses the Active Object pattern to process incoming messages [3].

Synchronization Model. When concurrent processes access shared resources,
synchronization is necessary in order to ensure consistency of data in case of con-
current modification. There are two principal approaches to ensure consistency:
Avoid conflicts by locking data before modification or to detect and resolve con-
flicts. Common locking mechanisms include mutexes and semaphores. Common
conflict resolution mechanisms include transactions and protocols for updating

Agilo: A Highly Flexible Groupware Framework 53

shared data. Both approaches can be implemented in many different ways. Lock-
ing is appropriate if, e.g., changes are hard to detect or complicated to resolve.
However, locking reduces performance, as the application has to wait for the lock
before being able to continue, which affects the usability of interactive systems.

Depending on application requirements, both strategies can be appropriate
and therefore groupware frameworks need to provide enough flexibility in this re-
spect. For example, DyCE [4] offers optimistic transactions, whereas COAST [3]
additionally offers pessimistic transactions, both with automatic conflict detec-
tion and rollback.

3 Framework Design

The design of the Agilo framework directly addresses the variation points de-
scribed in the previous section. It is based on experiences with groupware frame-
works we developed in the past [3,4]. Its flexibility is increased by using design
patterns from the domain of distributed and concurrent computing. This leads
to an extensible and flexible groupware architecture that allows the integration
of heterogeneous groupware applications while giving developers enough freedom
in choosing abstractions that fit best to the applications they are building.

Before describing how the different variation points are realized in the Agilo
framework, the core concepts of the framework are described next.

The Agilo framework is designed around two key concepts: Modules and Mes-
sages. Modules are software components that are either located on the frame-
work level or on the application level. An Agilo groupware application consists of
several modules each running on a node of the system. Messages are application-
specific data chunks that are sent between nodes. Incoming messages at a node
are processed sequentially and are “forwarded” to one or more application mod-
ules which usually send messages to one or more modules running on other nodes
as result of processing an incoming message. Providing this message-based com-
munication concept the framework allows the development of groupware appli-
cations with a very simple need for communication support such as chats and
voting tools, while more sophisticated communication needs can be built easily
on top of the message communication (see below).

The framework core is designed to be as small as possible whereas most of
the functionality is implemented as separate modules. This approach reveals
two advantages: first, the knowledge about the framework required to build
applications is kept very small and it can be extended successively as needed.
Second, many parts of the framework can be configured independently, leading
to a high adaptability and flexibility of the framework.

The remainder of this section elaborates on how exactly the framework pro-
vides this flexibility by offering alternative realizations at the different variation
points described in the previous section.

Distribution Model. The distribution model of Agilo has been designed to ac-
commodate both the Client-Server and Peer-to-Peer distribution architectures.

54 A. Guicking, P. Tandler, and P. Avgeriou

In order to be able to establish a Client-Server distribution, the framework con-
sists of three parts: A client-side part, a server-side part, and a common part that
is required by both client and server. The Peer-to-Peer distribution is achieved
by making each participating node a combined client and server, i.e. by deploying
client and server components together in each node. Additionally, both distri-
bution architectures require specific configuration settings in order to adapt the
server and client functionality to work in the respective distribution type.

Communication Infrastructure. The Communication Infrastructure of Agilo
allows the use of different transport and data protocols. It is realized by following
the Client-Dispatcher-Server pattern [12]. The communication between client
and server or among peers can be customized on two levels: On the lower level,
Agilo supports different transport protocols, such as TCP or HTTP. Protocol-
specific implementations accomplish sending and receiving messages while hiding
implementation details such as fault-tolerance and native resource handling. The
upper level provides different marshalling behavior to support different data-
exchange protocols (e.g. SOAP, XMPP). The customizable marshalling behavior
especially allows the integration of heterogeneous clients, such as PDAs and
smartphones.

Sharing Model. Besides the core concept of “low-level” messages, the Agilo
framework offers support for “high-level” shared objects that are implemented
on top of the two core concepts of Agilo, messages and modules.

Agilo provides a concrete interface for objects that need to be shared while
the distribution scheme is implemented in a separate ObjectManager module.
The data itself and its distribution scheme are thus decoupled, allowing the use
of different distribution schemes such as centralized, semi-replicated, or repli-
cated shared objects. Application-specific objects that need to be shared have
to implement a specific interface in order to be managed by the ObjectManager.

Concurrency Model. The Concurrency Model of Agilo makes provision how
multiple concurrent threads can simultaneously work together in the context of
the groupware application. Specifically, clients can interweave synchronous and
asynchronous messages following the Half-Sync/Half-Async pattern [13].

Another concurrency concern is the processing of incoming messages on the
nodes of the system. Messages are received by the node’s ConnectionHandler mod-
ule following the Reactor pattern [13]. The incoming messages are unmarshalled
and enqueued in the node’s MessageHandler module. The messages are dequeued
by a single-threaded active object [13], called MessageRouter that is responsible for
notification of the node’s application modules. A different implementation of the
ConnectionHandler uses the more performant Proactor pattern [13]. Furthermore,
instead of the naive single-threaded MessageRouter, a multi-threaded implemen-
tation using the Leaders/Followerspattern [13] can be used for module notification
if there is no need for a globally consistent order of messages.

In case of a Peer-to-Peer distribution model concurrency issues arise because
the order of incoming messages is no longer guaranteed to be the same on all

Agilo: A Highly Flexible Groupware Framework 55

peers. The handling of these problems when using a Peer-to-Peer setting is part
of the communication infrastructure.

Synchronization Model. The Synchronization Model of Agilo uses different
locking mechanisms, such as semaphores and mutexes as well as Java’s built-in
synchronization mechanisms to enforce controlled access to shared data. Ad-
ditionally, it allows for detection and resolution of conflicts. The framework
supports the use of transactions to combine multiple actions of a client into
an atomic action. When a client commits a transaction, a single message con-
taining the manipulations of the affected shared objects is sent to the server
where it is processed like any other message. Since the MessageHandler mod-
ule processes messages sequentially in the order they arrived, the processing of
incoming messages uses an implicit transaction management. In the case of a
Peer-to-Peer distribution model, the same concurrency issues arise as described
in the previous subsection.

4 Conclusions

In this paper we identified the limited flexibility of existing frameworks for syn-
chronous groupware applications as a significant shortcoming in order to combine
heterogeneous groupware applications in a reasonable way. This paper focused
on the integration of groupware applications on the application logic and data
model levels that were partitioned into five different variation points. Underlying
frameworks need to support these points of synchronous groupware applications
in a flexible and configurable way. Since existing groupware frameworks lack the
required flexibility we proposed a new groupware framework called Agilo that
seeks to overcome this shortcoming by providing enough flexibility and extensi-
bility with respect to all identified variation points. By providing a very modular
architecture that clearly separates different concerns it offers the required flexi-
bility to be applicable for a wide variety of groupware applications.

Since this paper presents work in progress some of the features described
above are not yet fully implemented in the Agilo framework. The Client-Server
and a rudimentary Peer-to-Peer distribution model, the communication infras-
tructure, the concurrency model as well as parts of the sharing and synchro-
nization models are already implemented as described in the previous section.
However, several essential parts are still missing, such as different distribution
schemes of shared objects and a transaction-based synchronization model.

Although the framework is not yet completely implemented, experience de-
rived from its use in a large commercial meeting support system4 has already
proved that the architecture of the framework greatly simplifies the develop-
ment of synchronous groupware applications. In order to integrate the meeting
support system with support for distributed meetings we used an existing chat
application framework5. In this framework we ported the lower communication
4 http://www.ipsi.fraunhofer.de/digital-moderation
5 http://www.ipsi.fraunhofer.de/concertchat

56 A. Guicking, P. Tandler, and P. Avgeriou

level to Agilo which made it easy to access the generated meeting documents
from the chat and provide a tight integration of the two systems.

Besides the implementation of the missing parts mentioned above, the next
steps concerning the proposed framework include more case studies, i.e. imple-
menting other diverse groupware applications. Furthermore, the evaluation of
the framework concepts and how these support application developers as well
as how different combinations of variation point alternatives influence quality
requirements such as scalability and performance remain open issues.

References

1. Phillips, W.G.: Architectures for synchronous groupware. Technical Report 1999-
425, Queen’s University (1999)

2. Lukosch, S., Schümmer, T.: Communicating design knowledge with groupware
technology patterns. In: Proc. CRIWG 2004. LNCS, Springer (2004) 223–237

3. Schuckmann, C. et al.: Designing object-oriented synchronous groupware with
COAST. In: Proc. CSCW’96, ACM Press (1996) 30–38

4. Tietze, D.: A Framework for Developing Component-based Co-operative Applica-
tions. PhD thesis, Darmstadt University of Technology, Germany (2001)

5. Streitz, N.A. et al.: DOLPHIN: Integrated meeting support across local and remote
desktop environments and liveboards. In: Proc. CSCW’94, ACM Press (1994) 345–
358

6. Schmid, H.A.: Systematic framework design by generalization. Communications
of the ACM 40 (1997) 48–51

7. Froehlich, G. et al.: Reusing hooks. In Fayad, M.E. et al., ed.: Building Application
Frameworks: Object-Oriented Foundations of Framework Design. John Wiley &
Sons (1999) 219–236

8. Roth, J.: A taxonomy for synchronous groupware architectures. In: Workshop
“Which Architecture for What” of CSCW’00. (2000)

9. Hill, R.D. et al.: The Rendezvous architecture and language for constructing mul-
tiuser applications. ACM ToCHI 1 (1994) 81–125

10. Roseman, M., Greenberg, S.: Building real time groupware with GroupKit, a
groupware toolkit. ACM ToCHI 3 (1996) 66–106

11. Roth, J.: ‘DreamTeam’: A platform for synchronous collaborative applications. AI
& Society 14 (2000) 98–119

12. Buschmann, F. et al.: Pattern-oriented Software Architecture. A System of Pat-
terns. Volume 1. John Wiley & Sons Ltd (1996)

13. Schmidt, D.C. et al.: Pattern-oriented Software Architecture. Patterns for Concur-
rent and Distributed Objects. Volume 2. John Wiley & Sons Ltd (2000)

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 57 – 72, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Autonomous and Self-sufficient Groups:
Ad Hoc Collaborative Environments

Joan Manuel Marquès1,2 and Leandro Navarro2

1 Universitat Oberta de Catalunya, Departament of Computer Sciences,
Av. Tibidabo, 39-43, 08035 Barcelona, Catalonia, Spain

jmarquesp@uoc.edu
2 Universitat Politècnica de Catalunya, Department of Computer Architecture,

Jordi Girona, 1-3, D5-105, Campus Nord, Barcelona, Catalonia, Spain
{marques,leandro}@ac.upc.edu

Abstract. Asynchronous collaborative applications and systems have to deal with
complexities associated with interaction nature, idiosyncrasy of groups and technical
and administrative issues of real settings. Existing solutions address asynchronous
collaboration via simplified and centralized models. In this paper we present
LaCOLLA, a fully decentralized middleware for building collaborative applications
that provides general purpose collaborative functionality without requiring anyone to
provide resources for the whole group. This helps applications to incorporate
collaboration support and deal with most complexities derived from groups and its
members. The implementation of LaCOLLA follows the peer-to-peer paradigm and
pays special attention to the autonomy of its members and to the self-organization of
its components. Resources (e.g. storage, task execution) and services (e.g.
authorization) are provided by its members, avoiding dependency from third party
agents or servers. This work was first validated by simulation. Then we built the
middleware and adapted some collaborative applications.

1 Introduction

One of the most significant benefits of the Internet has been the improvement on
people’s interactions and communication. E-mail, Usenet News, Web and Instant
Messaging are four of the most well-known and successful examples of this. Internet
has allowed the creation of asynchronous virtual communities where members
interact in a many-to-many basis. Many-to-many interaction, uncommon in the
physical world, has transformed the way people learn, do work together, find others
with common interests and share information among them, etc. After a decade of
great excitement, the pace of this transformation is slowing down because
collaboration is much more than these tools, because the Internet is designed for one-
to-one interaction (the Internet transport is designed for the communication between
two hosts) and that applications with collaborative necessities have to deal with
complexities derived from:

• Interaction nature: participants are dispersed, many-to-many collaboration, people
participate in the collaboration at different times, the same person connecting from
different locations at different times of the day (home, work, mobile).

58 J.M. Marquès and L. Navarro

• Idiosyncrasy of groups: variety of issues such as flexibility, dynamism,
decentralization, autonomy of its participants, different kinds of groups (task
oriented, long-term, weak commitment groups, etc), groups exist while its
members participate in group activities and provide necessary resources, etc.

• Technical and administrative issues: guarantees for the availability of information
generated in the group, interoperability among applications, security aspects
(authorization, access rights, firewalls), participants belonging to different
organizations or departments with different authorities that impose rules and limits
to facilitate administration, internal work and individual use, etc. [1]

Development of applications that take into account all those requirements are too
complex and costly, therefore collaborative applications focus only in a few key
aspects while neglecting others. In that way, most of the solutions resort to simpler
client/server centralized models using resources administrated by a third party (a
service provider). Client/server solutions –or more generally speaking, all solutions
that require some sort of centralization– impose technical, administrative and
economic restrictions that interfere with the interaction nature and idiosyncrasy of
groups.

In contrast, Peer-to-Peer (P2P) systems or networks are distributed systems formed
only by the networked PCs of the participants. All machines share their resources:
computation, storage and communication. They all act both as servers and as clients.
P2P systems are self-sufficient and self-organizing, applying protocols in a
decentralized way to perform search and location, and sharing the burden of object
transfers. As resource provision and coordination is not assigned to a central
authority, all participants have similar functionalities and there is no strict dependency
to any single participant. P2P networks may be robust and attain tolerance to failures,
disconnections and attacks. [2]

In this paper we present LaCOLLA, a fully decentralized P2P middleware for
building collaborative applications that provides general purpose collaborative
functionalities based on the resources provided by group participants only. The
provision of these functionalities will avoid applications deal with most of
complexities derived from groups, members working across organizational
boundaries and requiring additional resources. This simplification (transparency) will
help include collaborative aspects into applications in an ad-hoc manner.

LaCOLLA began as a middleware implemented following the peer-to-peer
paradigm paying special attention to the autonomy of its members and to self-
organization of its components. Another key aspect was that resources (e.g. storage)
and services (e.g. authorization) were provided by its members (avoiding dependency
from third party agents). At this first stage, it provided support to: storage, awareness,
groups, members, instant messaging and location transparency. Now we are
incorporating the ability to execute tasks using computational resources provided to
group. With that ability, groups will definitely evolve to become entities per se, not
only gatherings or collections of members.

Having groups as units of organization and use of resources would help to change
to a view of the Internet as a collection of communities: groups of individuals sharing
resources among them (an individual may belong to different groups and a resource
may belong to different groups). As an example, in virtual learning environments

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 59

students may need to do activities in groups using some kind of software. It will be
useful that any member of the group could install the software by deploying it using
the computational resources available to the group. After that, any member of the
group could use that software and the results will be stored on storage resources
belonging and available to group.

This ability of pooling resources belonging to groups has been strongly influenced
by grid systems. Grids are large-scale geographically distributed hardware and
software infrastructures composed by heterogeneous networked resources owned and
shared by multiple administrative organizations which are coordinated to provide
transparent, dependable, pervasive and consistent computing support to a wide range
of applications [3]. In contrast, our focus is on the ad-hoc creation of groups based
solely on the resources provided by the participants, independently of underlying
administrative organizations or external service providers.

Groove (http://www.groove.net) is a platform that partially covers some of the
ideas behind LaCOLLA approach. In [4] Groove is defined as a system that lets users
create shared workspaces on their local PCs, collaborating freely across corporate
boundaries and firewalls, without the permission, assistance, or knowledge of any
central authority or support groups. Groove allows transparent synchronization among
workspaces, but depends on relay servers to provide offline queuing, awareness, fan-
out and transparency (to overcome firewall and NAT problems). Those relay servers
are provided by third parties. The main differences between Groove and LaCOLLA
are that groove emphasizes transparent synchronization of collaborating PCs, along
with direct communication among them. Also the fact that provides third party relay
servers. Whereas LaCOLLA emphasizes on self-organization as a group and uses
only resources provided by its participants (no dependency on third parties).
Participants are not obliged to provide resources to group, but group works only with
resources provided by its members. All resources connected to group are
synchronized transparently and are used to articulate collaboration.

The rest of the paper is organized as follows: Section 2 presents the requirements
that should satisfy an asynchronous collaborative middleware. Section 3 describes the
functionalities and architectural aspects of LaCOLLA, with emphasis on what we call
virtual synchronism: virtually immediate access to changes and latest versions of
objects, along with the API offered to applications and an overview of internal
mechanisms behavior. Section 4 presents experimental results from a simulator,
concluding in Section 5.

2 Requirements for an Asynchronous Collaborative Middleware

As mentioned previously, asynchronous collaborative applications have to deal with
many aspects to support collaboration. The basic requirements a middleware should
satisfy to facilitate the development of this kind of applications are [5]:

• Decentralization: no component is responsible of coordinating other components.
No information is associated to a single component. Centralization leads to simple
solutions, but with critical components conditioning the autonomy of participants.

• Self-organization of the system: the system should have the capability to function
in an automatic manner without requiring external intervention. This requires the

60 J.M. Marquès and L. Navarro

ability of reorganizing its components in a spontaneous manner in presence of
failures or dynamism (connection, disconnection, or mobility).

• Oriented to groups: group is the unit of organization.
• Group availability: capability of a group to continue operating with some

malfunctioning or not available components. Replication (of objects, resources
or services) can be used to improve availability and quality of service.

• Individual autonomy: members of a group freely decide which actions perform,
which resources and services provide, and when connect or disconnect.

• Group's self-sufficiency: a group must be able to operate with resources
provided by its members (ideally) or with resources obtained externally (public,
rent, interchange with other groups, ...)

• Allow sharing: information belonging to a group (e.g. events, objects, presence
information, etc.) can be used by several applications.

• Security of group: guarantee the identity and the selective and limited access to
shared information (protection of information, authentication).

• Availability of resources: provide mechanisms to use resources (storage,
computational, etc.) belonging to other groups (public, rented, interchange
between groups to improve availability, etc.)

• Internet-scale system: formed by several components (distributed). Members and
components can be at any location (dispersion).
• Scalability: in number of groups, guaranteed because each group uses its own

resources.
• Universal and transparent access: participants can connect from any computer or

digital device, with a connection independent view (e.g. as a web browser).
• Transparency of location of objects and members: applications don't have to

worry about where are the objects or members of the group. Applications use a
location independent identifier and may access to different instances as people
move, peers join and leave, or any other conditions change.

• Support disconnected operational mode: work without being connected to the
group. Very useful for portable devices.

3 LaCOLLA

LaCOLLA is a middleware that follows the requirements presented in the previous
section. Four main abstractions have inspired the design process of LaCOLLA:
oriented to groups, all members know what is happening in the group, all members
have access to latest versions of objects, and tasks can be executed using the
computational resources belonging to the group. These abstractions take shape in the
following functionality.

3.1 Functionality

LaCOLLA provides to applications the following general purpose functionality [5]:

• Communication by “immediate” and consistent dissemination of events:
information about what is occurring in the group is spread among members of the

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 61

group as events. All connected members receive this information right after it
occurs. Disconnected members receive it during the re-connection process. This
immediate and consistent dissemination of events helps applications to provide
awareness to members.

• Virtually strong consistency in the storage of objects: components connected to a
group obtain access to latest version of any object. Objects are replicated in a
weak-consistent optimistic manner. Therefore, when an object is modified,
different replicas of the object will be inconsistent for a while. However,
LaCOLLA guarantees that, when an object is accessed, the last version will always
be provided (given that events are disseminated immediately).

• Execution of tasks: members of a group (or the applications these members use)
can submit tasks to be executed using computational resources belonging (or
available) to the group. In the present version, tasks are Java classes executed
locally that perform computational activities. In future versions we want to be able
to deploy services that would provide services at group level. Examples of this
kind of services could be a service to coordinate some dynamic and volatile aspect
in a synchronous collaborative activity, a session group-level awareness service, or
any other service that can provide an added value to groups and that the fact of
being deployed in a centralized manner (using only computational and storage
resources belonging to group) doesn’t affect the decentralization, autonomy and
self-sufficiency of the group.

• Presence: know which components and members are connected to the group.
• Location transparency: applications don't have to know the location (IP address) of

objects or members. LaCOLLA resolves them internally (similar to domain name
services like DNS).

• Instant messaging: send a message to a subgroup of members of the group.
• Management of groups and members: administrate groups and members: add,

delete or modify information about members or groups.
• Disconnected mode: allow applications operate offline. During re-connection, the

middleware automatically propagates the changes and synchronizes them.

3.2 Architecture

The architecture of LaCOLLA [5] is organized in five kinds of components (figure 1).
Each component behaves autonomously. Each member decides to instantiate any
number of the following components in the peer is using:

• User Agent (UA): interacts with applications (see section 3.4 for a more detailed
explanation). Through this interaction, it represents users (members of the group)
in LaCOLLA.

• Repository Agent (RA): stores objects and events generated inside the group in a
persistent manner.

• Group Administration and Presence Agent (GAPA): in charge of the administration
and management of information about groups and their members. It is also in
charge of the authentication of members.

62 J.M. Marquès and L. Navarro

UA RA GAPA

Api

Transport

...
Applications

Peer LaCOLLA
EA TDA

• Task Dispatcher Agent (TDA): distributes tasks to executors. In case that all
executors were busy, the TDAs would queue tasks. Also guarantees that tasks will
be executed even though the UA and the member disconnects.

• Executor Agent (EA): Executes tasks.

Fig. 1. Peer LaCOLLA

Components interact one to each other in an autonomous manner. The coordination
among the components connected to a group is achieved through internal
mechanisms. Internal mechanisms [5] have been grouped in: events, objects, tasks,
presence, location, groups, members and instant messaging. They are implemented
using weak-consistency optimistic protocols [6, 7] and random decision techniques
[8]. Table 1 describes which components are involved in each category of
mechanisms. More details about presence, events and objects mechanisms are
provided in section 3.4.

Table 1. Categories of mechanisms implemented by each kind of component

Categories of Mechanisms UA RA GAPA TDA EA

Events X X - - -

Objects X X - - X

Tasks X - - X X

Presence X X X X X

Location X X X X X

Instant Messaging X - X - -

Groups X X X X X

Members X - X - -

Security X X X X X

Disconnected operational mode X - - - -

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 63

Components and mechanisms related to tasks are based on the ideas used to design
JNGI [9], a decentralized and dynamic framework for large-scale computations for
problems that feature coarse-grained parallelization. While the components of JNGI
communicate using JXTA [10], we use the communication facilities of LaCOLLA.
Among the aspects that characterize LaCOLLA one that deserves special attention is
what we have named virtual synchronism.

3.2.1 Virtual Synchronism
LaCOLLA guarantees to applications that all events delivered to LaCOLLA will be
received almost immediately (i.e. immediately or just after reconnection) by the rest
of connected members. This guarantee provides the feeling of knowing what is
happening in the group while it is occurring. Disconnected members will receive the
events during the re-connection process.

LaCOLLA also guarantees that the last version of all objects (based on the
previous guarantee) belonging to group will be available immediately for all
members.

The sum of both guarantees is what we have named virtual synchronism. Apart
from the up-to-date perception that members of the group have at any moment, virtual
synchronism has an interesting side effect. This side effect is very useful in an
autonomous, decentralized and dynamic storage system: since all components know
the location of all objects (and their replicas), components access them directly
(without a resolver that informs about location of last version of objects). This allows
LaCOLLA to have an autonomous and decentralized policy to handle objects and
their replicas at the same time that guarantees immediate access to last versions.

3.3 Example of LaCOLLA Group

Figure 2 is a snapshot of a collaborative group that uses applications connected to
LaCOLLA. Each member belonging to group provides to it the resources that she/he
wants. As we have said, that decision depends on the capacity and connectivity of the
computer the member is using and on the degree of involvement that she/he has in the
group. In this example, two members (C and D) provide all possible components (RA,
GAPA, EA and TDA). Other two members (B and F) provide all components except
execution components (provide RA and GAPA). Three of the members (A, E and G)
provide no resources to group.

The members of the group use several applications to perform the collaborative
tasks. At the moment the picture was taken, they were using an asynchronous forum,
a file sharing tool and an instant messaging application. Not all members use all
applications at same time.

Those applications share presence, members and group information. On the one
hand, this prevents users to register to each application and also provides presence
information even though they are using different applications. On the other hand,
application developers don’t have to worry about where the necessary information is
located. LaCOLLA middleware also facilitates the sharing of information among
applications (if compatible formats are used) due the fact that information, events and
objects are stored in LaCOLLA storing resources (RA).

64 J.M. Marquès and L. Navarro

Member D (represented by discontinuous lines) is not connected to group at this
moment. Even though, her/his peer is connected to group, providing all its resources
to it. That means that all generated events and some of the objects would be stored in
her/his peer LaCOLLA (RA), tasks would be executed or planned using its resources
(EA, TDA), or that users would be authenticated by her/his peer (GAPA), information
of members and groups would be also stored in it.

Internet

File sharing Instant
Messaging

Forum

Instant
Messaging

Instant
Messaging

Instant
Messaging

Instant
Messaging

File sharing

File sharing

Forum

Forum

Transport

UA

UA

A LaCO LLA peer

Transport

UA

RAUA GAPA

A LaCO LLA peer

Transport

UA

UA

A LaCO LLA peer

Transport

UA

UA

A LaCO LLA peer

Transport

UA

RAUA GAPA

A LaCO LLA peer

EA TDA

Transport

UA

RAUA GAPA

A LaCO LLA peer

EA TDATransport

UA

RAUA GAPA

A LaCO LLA peer

A

B

C

D

E

F

G

Fig. 2. Snapshot of a collaborative group that uses applications connected to LaCOLLA

An example of a group like the one presented in figure 2 could be a collaborative
group doing a collaborative learning practice in a virtual university (as is UOC -
Universitat Oberta de Catalunya). The learning practice could be a software
development project or a case study. In those cases, a member of the group initiates
the group (providing at least one RA and one GAPA components) and invites other
members (who contribute with more resources and components to the group). From
that point on, the group operates using the resources provided by its members.
Although any member disconnects its resources or is removed as member of the
group, the group will be operative. And most important, nothing will happen if the
initiator of the group disconnects its resources or is removed from the group. As long
as members provide resources to the group, it will exist. Whenever no member
provides resources, the group would extinguish.

LaCOLLA is independent of the applications that use its functionalities. Many
applications (not only the kind of applications presented in the figure) involved in a

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 65

collaborative task could benefit from the general purpose collaborative functionalities
that LaCOLLA provides. These applications could range from applications that only
share generated information to sophisticated collaborative applications exploiting
awareness information and coordinating actions (as events) of participants in the
collaboration.

3.4 LaCOLLA Middleware

At the moment of writing this paper, we had the first beta version of LaCOLLA
middleware. This version can be found at: http://lacolla.uoc.edu/lacolla/. It includes
the source code, some basic instructions on how to use LaCOLLA, and installation
procedures. LaCOLLA middleware has an open source license and is written in the
Java language, what makes it independent from the underlying platform.

From both building collaborative applications that use LaCOLLA and from using
the applications we developed, we obtained valuable ideas and improvements to
introduce in the second beta version. The new version will pay special attention to
security issues, which are at its minimum expression in the first version. We are also
planning to introduce new components and mechanisms that will allow mobile
devices (PDA, mobile phone, sensors, etc.) become LaCOLLA peers.

UA

Api

ApplicationSideApi
login(...)
logout(...)
disseminateEvent(...)
putObject(...)
getObject(...)
removeObject(...)
addGroup(...)
addMember(...)
...

newConnectedMember(...)
memberDisconnected(...)
newEvent(...)
Exception(...)
...

RMIRegistry:
host: 134.23.129.21
port: 2333
Object: ApplicationSideApiImpl.class

RMIRegistry:
host: 134.23.129.21
port: 2156
Object: ApiImpl.class

...

Application

Peer LaCOLLA

Fig. 3. LaCOLLA API. It has two parts. Applications use UA’s API to ask LaCOLLA to
perform some action. The other API is provided by the applications to the UA were they are
connected, that API is used by LaCOLLA to notify events or information to applications.

3.4.1 LaCOLLA API
LaCOLLA provides a powerful API that can be easily used by any application. As
can be seen in figure 3, the API of LaCOLLA is divided in two parts. The first part is
the API provided by LaCOLLA (through its UA) to applications. The detail of
functions that an UA provides to applications is listed on table 2.

66 J.M. Marquès and L. Navarro

The second part of the API is used by an UA to notify events or information coming
from LaCOLLA to applications connected to the UA. Table 3 lists the functions. As can
be seen in figure 3, UAs invoke functions at ApplicationSideApi class. This class
is provided with LaCOLLA middleware and must be extended by any application that
wants to use LaCOLLA.

Java RMI is used to publish and invoke each part of the API. In the example of
figure 3, UA’s API is published at host 134.23.129.21 and port 2156. When an

Table 2. API functions that User Agents offer to applications

Category Function Description
login Connects user to group.
logout Disconnects user from group. Presence
whoIsConnected Which members are connected to the group?
disseminateEvent Sends an event to all applications belonging to group.

Events
eventsRelatedTo Which events have occurred to a specific object?
putObject Stores an object in LaCOLLA.
getObject Obtains an object stored into LaCOLLA. Objects
removeObject Removes an object stored in LaCOLLA.
submitTask Submits a task to be executed by computational

resources belonging to group.
stopTask Stops a task.

Tasks

getTaskState In which state is the task?
Instant Messaging sendInstantMessage Sends a message to specified members of the group.

addGroup Creates a new group.
removeGroup Removes a group.
modifyGroup Modifies the properties of a group.
getGroupInfo Gets information about the properties of a group. (Look

at groupInfo function)
Groups

getGroupInfoSync Gets information about the properties of a group in a
synchronous manner. This function does not return until
the operation is completed and a result is available.

addMember Creates a new member.
removeMember Removes a member.
modifyMember Modifies the properties of a member.

Members

getMemberInfo Gets information about the properties of a member.

Table 3. API functions that UA invokes on applications

Category Function Description
newConnectedMember Notifies that a new member has been connected.

Presence
memberDisconnected Notifies that a member has been disconnected.

Events newEvent Reception of an event occurred in the group.
taskStopped Notifies that the task has been stopped nicely.

Tasks
taskEnded Notifies the ending of a task.

Instant Messaging newInstantMessage Reception of a new instant message.
Groups groupInfo Reception of the group information.

exception Notifies that an internal exception or anomalous
situation has occurred.

Other functions
appIsAlive UA queries the state of the application. Used to

know if application is alive and connected to group.

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 67

application wants to login, logout, send an event, put an object, get an object, etc. it
has to invoke the API function at this location.

The same thing happens with the API provided by each application to LaCOLLA.
In that case, each application extents ApplicationSideApi and publishes it. In
the example, application is at host 134.23.129.21 and at port 2333. This API allows
UAs notify to applications that a member has connected, that a member has
disconnected, that there is a new event, an exception, etc.

It is also interesting to notice that all applications connected to a LaCOLLA peer
will use the API provided by its UA, but that each application will have its own API
and that the UA will notify to each application individually.

If the application is written in Java the integration with LaCOLLA is very easy. It
has to use Java rmi to invoke the API of LaCOLLA at UA. The application also has to
extent ApplicationSideApi class provided along with the LaCOLLA
middleware. This makes very easy to adapt applications done in Java to benefit from
LaCOLLA.

If the application is written in other programming languages, the developer has to
build a module to be able to use the API of LaCOLLA. This module is very easy to
build because it only has to translate parameters and results to and from Java. For
instance, if the application is written in C/C++, JNI (Java Native Interface) can be
used. The module will encapsulate both sides of the API: the invocations from
application to UA and the notifications from UA to application.

3.4.2 Components and Internal Mechanisms
Components are implemented in Java and behave according to its local information
(autonomy). Coordination among components connected to a group is achieved by
internal mechanisms, which allow components learn new information and
synchronize its local information with other components. Internal mechanisms behave
in a decentralized and autonomous manner. Components communicate by message
passing. Messages are serialized Java objects sent using TCP sockets.

There are 10 categories of internal mechanisms divided in several sub-
mechanisms. Each sub-mechanism performs different actions depending on the kind
of component. Is out of the scope of this paper to detail how the decentralized and
self-organized behavior of LaCOLLA is achieved. A fully and detailed description
can be found at [5, 11]. Alternately we are going to explain the general behavior of
some LaCOLLA’s internal mechanisms and the key aspects to understand its
philosophy.

LaCOLLA middleware is based on the presence mechanism. To guarantee the
consistency and a good performance of LaCOLLA it is required that each component
connected to group knows which other components are connected to the group. The
other key mechanism is event dissemination. Presence is the basis for the peer-to-peer
behavior (decentralization, autonomy, self-organization and self-sufficiency). Event
mechanism provides immediateness and consistency of view. In the next paragraphs
more detail of both categories of mechanisms will be provided. Prior to that, is
important to understand that LaCOLLA is a middleware intended to support
asynchronous group collaboration and some sorts of synchronous collaboration.
Therefore, groups are considered to have a small number of members and components
(as is stated in validation section, LaCOLLA can deal with groups formed by 100 or

68 J.M. Marquès and L. Navarro

more components, but groups, to be realistic collaborative groups, should typically
have 5, 10 or 20 members, not more). LaCOLLA was not created to support
communities of members sharing or performing some weak-collaborative task.

Presence sub-mechanisms are: connection of a component, disconnection of a
component, consistency of connected information, and detection that a component is
no more connected. When a component wants to connect a group, sends its
authentication information to a GAPA. If authentication is ok, GAPA answers with
information about which components the GAPA knows that are connected to group.
Then the new component sends a message to all components he knows that are
connected to the group (those that GAPA has informed him) informing about its
connection to the group. Prior to an ordered disconnection, the disconnecting
component informs other components about its disconnection. To synchronize
information about connected components, two techniques are used: a) every time a
component sends a message to another component it includes the information about
the components the sender knows that are connected. This allows the receiver to learn
about connected components he didn’t know that where connected. b) Time to time, a
component randomly selects N1 components and performs a consistency session with
them. During a consistency session between A and B, A tells B which components A
knows that are connected to group; B tells A which components knows that are
connected to group. The last sub-mechanism related to presence refers to detection of
components that are no longer connected to group: when a component (A) hasn’t
received any message from B for a long period of time2, A tries to contact B. If A
can’t reach B, A removes B from its connected components list.

When an action occurs, an event is generated to inform about the action. Actions
can be: new document, new member, document read, or any action that an application
wants to disseminate to all members. As was explained in virtual synchronism part of
the section 3.2, events are used to provide awareness information to members, but are
also used to guarantee the internal consistency of the system. The dissemination of
events mechanism guarantees that all connected components have all generated
events in a time that users perceive as immediate.

When a new event is created, the component where the event was created sends it
to all components the component knows that are connected. As can be seen, the
performance of this mechanism is strongly related with presence mechanism. All RA
store in a persistent manner all received events. Components not connected to the
group or components that the sender of the event doesn’t know that are connected to
the group will not receive the event. To overcome this, a consistency sub-mechanism
is implemented. Event’s consistency mechanism is based on an adaptation of
Golding’s Time-Stamped Anti-Entropy algorithm [6] and is performed between an
UA or RA and an RA. Consistency sessions among RA are as follows: time to time,
an RA (RA1) randomly selects another RA (RA2) among the RA that knows are
connected to group. Then, RA1 sends to RA2 a summary of all events that RA1 has
received. RA2 sends to RA1 all events that RA2 has and that RA1 doesn’t have along

1 Max (2 , log2(numberConnectedComponents)+1). This number was adjusted by simulation.
2 This period of time is a parameter that can be adjusted. Component A can also know about

component B through some other component (C). In that case, either by presence sub-
mechanism a) or b) C has informed A that B was still connected.

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 69

with the summary of all events that RA2 has. Finally, RA1 sends to RA2 all events
that RA1 has that RA2 doesn’t have. Similarly, in the case of consistency sessions
between UAs and RAs, the UA asks an RA for events that the UA doesn’t have but
UA never provides new information to RAs.

Events mechanism doesn’t provide any order guarantee. Events mechanism
provides immediateness (events are sent by originator to all other connected
components right after the event is created) and consistency (consistency sessions
guarantee that not connected components or components that haven’t received the
event will eventually receive it3). In the case some ordering guarantees were required,
applications should provide them. As future work we are considering to implement
some event’s ordering polices in top of LaCOLLA and provide them to applications.

Events and presence mechanisms are in the basis of all other mechanisms. For
example, objects mechanism is in charge of storing, retrieving, removing and
guaranteeing the availability of objects stored in LaCOLLA. When an object is stored
in LaCOLLA, the object is send to any RA and an event is disseminated to all
components to inform about the new object and its location. The event will be used by
any component to know where is located the object. When an UA wants to retrieve an
object, the UA knows where the object is located (some moment in the past, the UA
received and event informing about the location of the object). Consequently, it
obtains the object from any of its locations. To guarantee the availability of objects,
they are automatically replicated in a decentralized manner. Every time a new replica
is created, an event is disseminated to inform about the availability of new replica and
its location.

Other mechanisms also combine push, pull and autonomous decision behaviors as
it has been explained for presence and events mechanisms. Even though the push
behavior is frequently used, neither components nor the network are saturated because
groups are usually small.

 This combination of autonomy of components and direct communication among
them (in a peer-to-peer manner) along with the common ownership of resources
provides a flexibility that suits the idiosyncrasy of our groups.

4 Validation

As said in section 3.4, LaCOLLA middleware implements the functionalities
presented in this paper. We also adapted and implemented some collaborative
applications (an instant messaging tool, an asynchronous forum, and a document
sharing tool) that benefit from LaCOLLA. These realistic applications helped us to
improve the architecture and implementation of LaCOLLA. We have done limited
tests with a number of ad-hoc users. All these tests confirm the usefulness of
LaCOLLA. The next step is going to be to extend the functionalities of the
applications we developed and use them in regular university courses at UOC.

Before implementing LaCOLLA middleware, a simulator was implemented to
validate the proposed architecture under several realistic scenarios. The simulator

3 Implemented variant of TSAE algorithm used in events’ consistency sessions [5, 6] ensures

that.

70 J.M. Marquès and L. Navarro

used J-Sim [12] as network simulator and implemented the UA, RA and GAPA
components, virtual synchronism and the internal mechanisms necessary to prove that
LaCOLLA behaves, as expected, in an autonomous, decentralized and self-sufficient
manner.

Several experiments were done with synthetic workloads with different degrees of
dynamism (failures, connections, disconnections or mobility), with different sizes of
groups (from 5 to 100 members) and with different degrees of replication (number of
RA and GAPA). All components were affected by dynamism.

Simulations had two phases. The first phase simulated a realistic situation. In that
phase all internal mechanisms were operative. During this phase members' activity
was simulated and components connected, disconnected, moved or failed. The second
phase was called repair phase and only internal mechanisms were active. This second
phase was used to evaluate how long LaCOLLA required achieving: a) self-
organization: all connected components have consistent the information about all
internal mechanisms, b) virtual synchronism: all connected components have all
events and have consistent the information about available objects, c) presence and
location: all connected components have consistent the information about presence
and location.

Experiments showed that, in spite of the dynamism and the autonomous and
decentralized behavior of components, LaCOLLA required short amount of time
(with respect to the rate of changes) to update the information referring to internal
mechanisms in all components. Experiments also showed that members knew what
was happening in the group and that they had access to the latest versions of objects
in a time they perceived as immediate [5].
Figure 4 shows the time required by LaCOLLA (depending on group size) to be self-
organized, to provide virtual synchronism, and to have consistent information about
presence and location. Note that, for groups of typical size (10 members),

0
20
40
60
80

100
120
140
160
180
200
220

0 20 40 60 80 100

size (#members)

#s
ec

on
ds

self-organization
virtual synchronism
presence + location

Fig. 4. Simulation results. The figure shows the time required a) to be self-organized, b) to have
consistent all information related to virtual synchronism (events and objects) and c) to have
consistent the information related to presence (presence and location).

 Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments 71

LaCOLLA has good performance: it requires 20 seconds to self-organize, and less
than 10 seconds to provide virtual synchronism. It deserves special attention the fact
that, even though all components don't have all consistent information about internal
mechanisms (self-organization), connected members know all what is happening in
the group and have access to the last version of objects (virtual synchronism) in a time
that they perceive as immediate. This is due to the decentralized implementation of
internal mechanisms and to the fact that non-key mechanisms have long-term
consistency policies. In this figure it is also plotted the time required to have
consistent presence and location mechanisms because they have a great influence in
the achievement of self-organization.

When the size of groups increases, the required time grows, but still maintains low
enough values for asynchronous collaboration (e.g. with 60 members: self-
organization takes 2 minutes, providing virtual synchronism in 1 minute). This also
proves that LaCOLLA can be used in situations where quite large groups require
asynchronous sharing capabilities. These values will be further adjusted based on
experience with real users using the current middleware with specific applications.

5 Conclusions and Future Work

Asynchronous collaborative applications have to adapt to group idiosyncrasy and
interaction style and support the formation of ad hoc collaborative environments for
people willing to cooperate using only their own computers, without any additional
computing resources (i.e. servers). This requires the autonomy and self-sufficiency
that peer-to-peer networks can only offer. We have identified groups as units of
resource sharing, by which several individuals dispersed through Internet may
spontaneously start to collaborate by just sharing their own computers to form an
independent ad hoc community.

In this paper we have described the general characteristics and properties of
LaCOLLA, a decentralized, autonomous and self-organized middleware for building
collaborative applications that operates with resources provided by their members,
that adapts to the idiosyncrasy and to the interaction nature of human groups, and that
allows execution of tasks using resources belonging to the group. We also presented
the details of current LaCOLLA middleware implementation, paying special attention
to its API.

From both building collaborative applications that use LaCOLLA and from using
the developed applications we obtained valuable ideas and improvements to introduce
in the next versions of LaCOLLA. These new versions will pay special attention to
security issues, which are at its minimum expression in the first version; and to
introduce new components and mechanisms that will allow mobile devices (PDA,
mobile phone, sensors, etc.) become LaCOLLA peers.

We are also planning to use LaCOLLA in real collaborative settings. In that sense,
we are planning to use collaborative applications that use LaCOLLA middleware in
some collaborative learning practices at UOC. UOC is a virtual university that
mediates all relations between students and lecturers through Internet. We think that
this kind of collaborative environments where participants never physically meet one
to each other will benefit from approaches like the one provided by LaCOLLA,

72 J.M. Marquès and L. Navarro

specially for the degrees of autonomy and self-sufficiency that can be achieved. These
real experiences will be of great value for us to further refine the architecture and
adjust the implementation of the middleware.

Acknowledgements

Work partially supported by MCYT-TIC2002-04258-C03-03.

References

1. Foster, I.; Kesselman, C.; Tuecke, S. (2001). The Anatomy of the Grid Enabling Scalable
Virtual Organizations. Lecture Notes in Computer Science.

2. Navarro L., Marquès J.M., Freitag F. (2004). On distributed Systems and CSCL. The First
International Workshop on Collaborative Learning Applications of Grid Technology
(CLAG 2004). Held in conjunction with the IEEE International Symposium on Cluster
Computing and the Grid (CCGrid 2004). April 19 - 22, 2004, Chicago, Illinois, USA.
http://www.ccgrid.org/ccgrid2004.

3. Bote, M., Dimitriadis, Y., Gómez-Sánchez, E. (2003) Grid uses and characteristics: a grid
definition. In Proceedings of First European Accross Grids Conference, 2003.

4. Hurwicz, M. (2001). Groove Networks: Think Globally, Store Locally. Network
Magazine. May 2001.

5. Marquès, J.M. (2003). LaCOLLA: una infraestructura autònoma i autoorganitzada per
facilitar la col•laboració. Ph.D. thesis, <http://people.ac.upc.es/marques/LaCOLLA-
tesiJM.pdf>

6. Golding, R.A. (1992). Weak-consistency group communication and membership. Doctoral
Thesis, University of California, Santa Cruz.

7. Saito, Y.; Shapiro, M. (2002). Replication: Optimistic Approaches. Technical Report
HPL-2002-33, HP Laboratories, 2002. <http://www.hpl.hp.com/techreports/2002/HPL-
2002-33.html/>.

8. Carter R. L. (1995). Dynamic server selection in the Internet. In Proceedings of the Third
IEEE Workshop on the Architecture and Implementation of High Performance
Communication Subsystems (HPCS'95).

9. Verbeke, J.; Nadgir, N.; Ruetsch, G.; Sharapov, I. (2002) Framework for Peer-to-Peer
Distributed Computing in a Heterogeneous, Decentralized Environment. Manish Parashar
(Ed.): Grid Computing, Third International Workshop, Baltimore, USA. LNCS 2536
Springer 2002, ISBN 3-540-00133-6. <http://jngi.jxta.org/>

10. JXTA: http://www.jxta.org/. An overview paper: L. Gong. Project JXTA: A Technology
Overview, 2001. < http://www.jxta.org/project/www/docs/TechOverview.pdf>.

11. LaCOLLA: http://lacolla.uoc.edu/lacolla
12. J-Sim: http://www.j-sim.org

Empowering End-Users: A Pattern-Centered
Groupware Development Process

Till Schümmer1, Stephan Lukosch1, and Robert Slagter2

1 Fern Universität in Hagen, Computer Science Department, Germany
{till.schuemmer, stephan.lukosch}@fernuni-hagen.de

2 Telematica Instituut, The Netherlands
robert.slagter@telin.nl

Abstract. When developing groupware satisfying user requirements is
even more difficult than in the context of single-user application de-
velopment; not only the interaction with the application itself but also
the interaction between group members must be respected. Current de-
sign methodologies insufficiently focus the designers’ attention to this
aspect. Therefore, we propose the Oregon Software Development Process
(OSDP) that fosters end-user participation, structures the interaction
between end-users and developers, and emphasizes the use of a shared
language between users and developers.

1 Introduction

The lack of end-user participation when designing software can be the source of
invalid requirements resulting in low end-user acceptance and inadequate sys-
tems; especially for groupware design. In single-user software, the interaction of
a user with the application and the domain data has to be supported. Compared
to these, groupware systems add a level of complexity, as also the interaction
between group members has to be supported.

We argue that this complexity can only be resolved by fostering interaction
between end-users and developers in the development process. For an efficient
interaction, end-users have to understand the different design alternatives. Ad-
ditionally, developers and end-users need a shared language for expressing the
core concepts of the developed system. Current groupware development process
models do not completely solve this problem.

In this paper, we describe the Oregon Software Development Process (OSDP)
that is based on observations made during The Oregon Experiment [1]. The
OSDP fosters end-user participation, pattern-oriented transfer of design knowl-
edge, piecemeal growth in form of short iterations, and frequent diagnosis and
reflection for improving the application. End-users are empowered to better un-
derstand development possibilities for groupware and to act as an expert. A
previous publication [2] introduced the core practices of the OSDP. Now, we
focus on the relation of OSDP with groupware design.

In the following sections, we will exactly define the requirements for a group-
ware design process model, analyze existing approaches with regard to the re-
quirements, and show how the OSDP solves these requirements. We will also

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 73–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

74 T. Schümmer, S. Lukosch, and R. Slagter

discuss experiences that were gathered while developing a collaborative learning
environment using the OSDP.

2 Design Theories That Focus on Users

Important contemporary influences of design theories start with Heidegger’s dis-
cussion of situated tool use. According to Heidegger [3], the design of a tool can
only take place in situ as users are in most cases not aware of the tool. When
using, e.g., a car, the driver is focussing on the context, namely the road and the
destination. She starts to become aware of the car (as a tool), when her expec-
tations of the car do not match the real behavior, e.g. because of an unexpected
noise. Heidegger calls such a situation a break. For the case of user-centered
design, we can draw three important conclusions from breaks:

1. The unexpected behavior pushes the, up to then unnoticed, tool in the users’
attention. Users start to reflect on their tool usage and make their expecta-
tions explicit.

2. The reflection has the goal of understanding different requirements or forces.
Users make their current expectations explicit and compare these with the
current tool behavior. Since the tool does not behave in the expected way,
users detect conflicting forces.

3. The context of the break is important since it provides full access to all
conflicting and related forces that result in the unexpected behavior.

The understanding of interrelating forces has been the most important
ground for another influential work in contemporary design: In Synthesis of
Form [4], Alexander proposed a mathematical approach for defining design prob-
lems. He observed that all design problems have the goal of creating an artifact
matching the users’ expectations regarding form and function in a specific con-
text. Alexander outlined a way for relating the different requirements of a design
problem to the requirements which influence each other. He proposed to orga-
nize these requirements in a tree structure in which the leaf nodes represent the
requirements that have mutual influences.

A designer should address the leafs first and compose solutions from the leafs
so that recursively the whole tree of requirements is satisfied. Idealistically, all
strong connected sets of requirements (the leafs of the tree structure of problem
decomposition) can be solved independently.

An often ignored warning of Alexander was the difficulty to understand all
requirements upfront. Satisfying a requirement can in turn be the trigger for new
requirements. This problem of changing and evolving requirements was further
discussed by Rittel and Webber [5]. They defined a problem where the solution
has an impact on the requirements as a wicked problem. For such problems, it is
difficult to design a solution. Instead, it is important to constantly improve the
solution to reduce the number of conflicting forces.

A second warning of Alexander was that the tree decomposition always leads
to ignored forces. In A city is not a tree [6], Alexander (1965) clarified that

Empowering End-Users 75

decomposition always needs to investigate the context of the unit of densely
connected requirements. In The timeless way of building [7], Alexander proposed
a new way of addressing connected requirements that puts an emphasis on the
context of the problem – the pattern. A pattern is a morphological law that
explains how to design an artifact in order to resolve a problem in a specific
context. Patterns have several properties that inform the design:

– They make the problem explicit instead of just stating a solution. The reader
of a pattern (ranging from lay persons to experts) is provided with a de-
scription of the problem that helps him to compare the implicitly perceived
problem with other known problems.

– They state the conflicting forces and explain how these forces change when
applying the solution.

In their book The Oregon Experiment [1], Alexander et al. describe how pat-
terns were used in a participatory design process. The approach combined dif-
ferent aspects, that were later separated: diagnosis and repair, piecemeal growth,
and end-user involvement.

The basic idea propagated by the Oregon Experiment was to establish a user
group that steers the design process of a university campus. To empower users to
act as designers the user group agreed on a set of patterns that were considered
as relevant given their problem space. Changes to campus buildings were from
then on initiated by the users: First the users were encouraged to reflect on their
actions and diagnose what features of the building were obstacles for a specific
action according to Heidegger’s notion of breaks. Then, users were asked to select
relevant patterns that address the observed problem and sketch an improved
design. Together with architects, this sketch was refined and implemented if the
user group agreed on the proposal. Alexander called this the process of diagnosis
and repair which is comparable to Schön’s theory of reflection-in-action [8].

End-user involvement is the main goal of participatory design [9]. It has its
origins in the debate between Scandinavian industry and trade unions regarding
the relationship of work and democracy [10]. The goal was to amplify the user’s
voice and thereby improve working life. However, although the end-users are in
tight interaction with designers, the designers typically do all design activities.
Participatory design stresses communication with users throughout the design
process, but assumes that the user can play the role of skilled worker. Transfer
of design knowledge to users was not in the main focus of participatory design.

2.1 Summary of Requirements

From the above discussion of design theories, we derive the following require-
ments on a groupware design process model:

R1: The process should encourage users to reflect on their activities and adapt
their group environment so that the group task can be better supported (in
line with Heidegger’s theory of breaks, Alexander’s theory of diagnosis and
repair, and Schön’s theory of reflection in action).

76 T. Schümmer, S. Lukosch, and R. Slagter

R2: The process needs to support iterative extension and modification of func-
tionality so that it can adapt to changing group processes (in line with
Heidegger’s and Alexander’s understanding of design as well as the theory
of Wicked Problems).

R3: The process must involve end-users who shape their own environment since
they are the key to conflicting forces (in line with the Oregon Experiment
and the school of participatory design).

R4: The process needs means to make end-users and developers eloquent enough
to express and exchange their personal needs, group needs, or design views
(one of the main goals of the pattern approach).

R5: The latter requirement implies that end-users have to be empowered to
understand and assess the different design decisions in a way that the ben-
efits and drawbacks become clear to the user (which helps them to better
understand the wickedness of the problem).

R6: The solutions should be adaptable to the socio-technical context like the
group structure, the programming language, the communication protocol, or
the system environment. This satisfies Alexander’s vision of a design that is
deeply situated in the user’s context.

R7: Wherever possible, users should be empowered to perform these adapta-
tions on their own. This empowers the user to act in breaks immediately
without the need of getting an expert involved.

R8: Successful adaptations and new designs have to be made available for all
users so that they can be used for solving future problems (in line with the
Oregon Experiment).

In the next section, we will review existing software and groupware design
approaches and show that none of them supports all these requirements.

3 Existing Approaches

Related work can be grouped in two classes: (1) generic software processes for
general software development and (2) the application and appropriation of these
processes for the context of groupware development.

3.1 Design of Software

Alexander’s theory of decomposition was adapted by the software development
community leading back to the NATO conference on software engineering [11]. It
led to Top-Down and Bottom-Up design which in turn influenced the Waterfall
method [12]. The waterfall method arranges software projects in different phases.
It starts with the design of the requirements and finally reaches the designed
and implemented product. The problem with waterfall approaches is that all
requirements are collected at the beginning of the project and changes to the
requirements should be avoided later on. As Alexander discussed it, this is a
problematic understanding of design. Especially, it is in conflict with R2.

Empowering End-Users 77

Currently, it is widely accepted that iterative development processes are a
good means for dealing with changing or uncertain requirements, e.g. the Spiral
Model [13] that implements piecemeal growth (R2). It can, e.g., be found in the
Unified Process [14] and the eXtreme Programming methodology [15]. The latter
bridges the gap to end-user involvement by arguing for an on-site customer who
interacts with the development team.

End-user involvement and the process of empowering end-users to act as de-
signers has further been discussed in the areas of participatory design of software
systems, end-user development, and tailorable software.

In participatory design for software systems, the end-users closely interact
with the developers to shape the system [16]. The development however stays
in the hands of the software developers (violating R7). As in other contexts, the
transfer of knowledge from experts to end-users is not supported. In this sense,
we can state that participatory design of software systems requires additional
means for educating end-users. It thus satisfies R3 but violates R4.

End-user development extends participatory design with the respect that
end-users should be empowered to modify their software on their own (satisfy-
ing R7). One technology for end-user development is the provision of tailorable
software that allows end-users to make adaptations to the software, while they
are using it [17] (satisfying R2, R3, R7).

The challenge is to provide opportunities for tailoring that are appropriate
for the people who need to perform the changes. As with other design problems,
tailoring requires insight in the problem at hand, the various conflicting forces
and possible solutions that is provided by the process. The tailoring approach is
thus in conflict with R4 and R6.

To support learning and communication (R4), Gamma et al. [18] applied the
idea of design patterns to the application domain of software design. These pat-
terns capture frequently used software patterns for object-oriented design. This
initial publication triggered pattern miners from various application domains in-
cluding human computer interaction [19], hypermedia design [20], or pedagogy
[21] and while the first patterns of the gang of four where focussing on designers
only, later applications of the pattern idea stated patterns in a way so that they
are understandable by developers and end-users and thus can serve as a Lingua
Franca for design [22] that helps end-users and developers in communication. In
this sense, patterns satisfy the requirements for a shared language (R4) and the
support for understanding best practices in design (R5).

3.2 Groupware Design

There are only a few groupware specific processes. Dewan proposed a waterfall-
like development process for the design and the evaluation of groupware [23]. He
focused on the development of research groupware prototypes and their evalua-
tion using self-studies, lab-studies, and field-studies. Although it could be used
in an iterative setting, the process brings with it all problems discussed in the
previous section, namely incomplete and uncertain requirements (violating R2).

78 T. Schümmer, S. Lukosch, and R. Slagter

The problem of uncomplete requirements is especially relevant for groupware
settings, as in addition to the interaction with a set of artifacts the interac-
tion between users has to be supported. Since human interaction should not be
understood in a mechanistic way, it is very likely that each user’s action will
affect other users’ expectations of next steps and his own actions. In this sense,
Fitzpatrick [24] argued that groupware development is a wicked problem, which
implies that waterfall approaches are not suitable for groupware development.

Participatory design methods have become quite prominent in groupware
design, e.g. [25], [26], or [27]. They argue that groupware systems have to be
designed for modifications to suit evolution of use (satisfying R2 and R3). An
important issue of tailoring groupware is the impact of tailoring operations: if
a tailoring operation impacts other participants, they may as a group perform
the tailoring. In that case, the users need a method to decide on a common
tailoring style and a process, how tailored groupware systems are reintegrated in
the group [28] and thus encourage sharing of best practices (R5). Most tailoring
environments do not consider this.

Tailoring, as well as end-user involvement, has been identified as an important
factor in groupware development processes. Extended STEPS [29], OTD [29] [30],
and SER [31] represent the state of the art in this area.

Extended STEPS is an iterative participatory development approach initially
proposed by Floyd et al. [32] and adapted to the context of tailorable collab-
orative applications by Wulf and Rohde [29]. The main idea is that end-users
collaborate with developers to prepare the embedding of the developed software
in the organizational context (R3, R6). This helps to better situate the software
in the user’s work context. During system use, developers maintain the system
and end-users adapt it by means of tailoring (R1, R2). But STEPS does not
structure knowledge transfer between the different stakeholders and capturing
of knowledge (violating R4, R5, R8). The patterns that fulfilled this role in the
Oregon Experiment are not present in STEPS.

OTD is an evolutionary approach to appropriate group processes and tech-
nology to support the processes during system use. It fosters reflection (R1) and
iterative design (R2). The end-user is involved throughout the process (R3) and
performs modifications through tailoring (R7). Finally, qualification for partic-
ipation is considered as an integral part of the process, which satisfies (R4).
Open issues are the sharing of best practices, the ways how changed artifacts
are embedded in the environment (violating R6).

SER addresses mutual learning of end-users and developers (R4). It starts
with a seeding iteration to capture domain knowledge and requirements. This
knowledge is used to perform evolutionary growth (comparable to piecemeal
growth) where the software is built (R2). Solutions found in this process are fed
back to the knowledge repository (R5). Finally, if the initial set of requirements
and captured knowledge does no longer provide answers to current problems,
the project moves in a phase of reseeding, where new requirements are gathered
and new initial knowledge is captured. SER is close to the process in the Oregon
Experiment, but there are important differences: SER does not discuss how

Empowering End-Users 79

knowledge transfer over projects takes place; it does not discuss how the problems
and solutions from previous projects should be captured for reuse. Additionally,
it does not make the process of diagnosis and reflection explicit (violating R1).

In summary, we observe that existing processes have focussed on parts of the
requirements. But no process for software development or specifically groupware
development satisfies all requirements that we consider as needed for an informed
and empowered end-user involvement.

4 The Oregon Software Development Process

The Oregon Software Development Process (OSDP) is based on four principles
which help to address our requirements:

1. Fostering end-user participation (R1, R3, R7),
2. Pattern-oriented transfer and capturing of design knowledge (R4, R5, R8),
3. Piecemeal growth via short design and development iterations (R2),
4. Frequent diagnosis and reflection on working practices and how the applica-

tion supports them (R1, R6).

An essential part of this development process is the use of patterns. The
patterns used in OSDP follow the pattern structure outlined in [2]. Our evolving
collection of groupware patterns currently contains more than 70 patterns at
different levels of abstraction (e.g., [33], [34]). Patterns are used as a means to
capture and represent design knowledge, but also as a means of communication
between end-users, designers and other stakeholders. Given these different types
of use, OSDP distinguishes two types of patterns:

1. high-level patterns targeted at end-users, and
2. low-level patterns targeted at software developers.

Low-level patterns deal, e.g., with class structures, control flow, or network
communication. High-level patterns focus on the system behavior, as it is per-
ceived by the end-user and empower the end-users to tailor their groupware
application to meet their requirements. In the extreme, high-level patterns de-
scribe how end-users can compose off-the-shelf components and embed them in
their work process. In that case developers no longer need to assist end-users in
implementing a pattern which of course requires that developers work according
to the OSDP.

4.1 OSDP Iterations

Figure 1 illustrates the three types of iterations that OSDP advocates in a de-
sign process (denoted by the three concentric circles). The following paragraphs
explain these iterations. As OSDP is an iterative approach, each iteration may
actually be performed multiple times; in fact, designers and users may even
choose to go back to a previous iteration type.

80 T. Schümmer, S. Lukosch, and R. Slagter

E
x

p
e

r
t

In
v

o
lv

e
m

e
n

t

3

8

2

6

11

5

7

9

U
s

e
r

In
v

o
lv

e
m

e
n

t

4 1

A
nalysis

of forces

P
lanning

C
onflicting

forces

D
es

ig
nP

at
te

rn
dr

iv
en

ta
ilo

rin
g

de
si
gn

- hi
gh

le
ve

l p
at

te
rn

s
-P

at
te

rn
dr

iv
en

gr
ou

pw
ar

e
de

si
gn

- lo
w

le
ve

l p
at

te
rn

s
-S

ce
na

rio
s

Im
plem

entation

P
atterns

&
m

ockups

P
attern

driven

groupw
are

tailoring

Te
st

&
U
sa

ge

U
sa

ge
w
ith

di
ag

no
si
s
&

re
fle

ct
io
n

- he
al
th

m
ap

-

Fun
ct
io
na

l t
es

ts

Conceptual
iteration

Development
iteration

Tailoring
iteration

Initial
forces

G
roupw

are

developm
ent

D
is
cu

ss
io
n

10

12

Fig. 1. The Oregon Software Development Process

The purpose of the innermost conceptual iterations of OSDP is twofold: first
it helps to get an idea of the group processes that need to be supported by the
system and thereby defines the scope for selecting potential technical solutions.
Second, it helps to form scenario interest groups that later on collaborate on a
shared scenario. At the beginning of the iteration, potential users of the group-
ware system gather and exchange stories of system use (1). This helps them
to capture their experience and situate the system under development in their
context. There is a major difference between the development of groupware so-
lutions for a well-known group and groupware that should be shipped to a large
user group (off-the-shelf groupware): In the first case, the user group for the
conceptual iteration emerges naturally from a specific organizational context.
In the latter case, a user group has to be carefully composed by analyzing the
target market.

Together with a development team, the stories are translated to scenarios
of future system use (2). In this design phase of the conceptual iteration, users
envision a future system and relate the different parts of the scenarios to group-
ware patterns. The patterns help to describe the future system by means of
high-level prototypes (e.g., paper-based Mock-Ups) (3). They also help to ex-
plore related problem areas that are often difficult to identify from outside the
context (according to Heidegger and Schön). The whole user group examines
the prototypes created by the scenario interest groups (SIGs) (4). They decide
which scenarios are most relevant for the future development. The result of the
conceptual iterations is an ordered list of scenarios that describes what parts of
the system should be built. A second result is that SIGs have formed that will
tightly interact with the developers in the development iterations.

Empowering End-Users 81

To check the requirements and a solution direction, the OSDP advocates
using short development iterations. They are made up from the detection of
conflicting forces (5), a pattern-driven design phase (6), the implementation of
this design (for instance using development technologies such as frameworks or
object-oriented components) (7), and functional tests (8).

Again, the users collaborate in SIGs. They examine their scenario and create
task cards describing tasks for the developers (according to the eXtreme Pro-
gramming planning game). The developer helps the users in breaking down the
scenario into tasks that are approximately of equal duration. The description of
the tasks is based on high- and low-level patterns. End-users use the pattern cat-
alogue (from the conceptual iteration) to acquire knowledge about the process of
design in this stage (6). The pattern language can be extended if new conflicting
forces (5) cannot be mapped to any patterns from the current pattern language.
This can mean that patterns have been forgotten in the conceptual iterations or
that the configuration of forces has not yet been encountered before.

Since more than one SIG can work on the scenarios in parallel, one group
member plays the role of the gardener (as proposed in [35]). She collects all task
cards and sorts them according to their relevance (indicated by the users).

In the tailoring iterations end-users collaborate with the developed groupware
system. They are encouraged to reflect on their system use (reflection in action).
Whenever they encounter a break situation (9), they analyze the conflicting
forces (10). A pattern collection helps them by providing recurring problems
together with the appropriate solutions (11). If the patterns describe solutions
at a high level and if the groupware system supports users in tailoring the system,
users can apply the pattern’s solution by tailoring (12). Otherwise, they describe
the problem using a task card (6) and passing this card on to the gardener. The
gardener will in turn resort the collection of task cards in order to provide all
users and developers with an updated plan for the system development.

Again, one has to take the focus of the groupware system into account. If the
groupware is used in one specific organizational context, it is easy to maintain
contacts between users, scenario interest groups, and, if needed, the development
team. Off-the-shelf groupware requires a more sophisticated process of collecting
and sharing user-made appropriations of the groupware system. In an ideal case,
users of the groupware would interact using a repository of best practices for
groupware appropriation. However, establishing a community that contributes
to and makes use of such a repository exceeds the scope of this paper.

A second role that is important in tailoring iterations is the pattern scout.
She observes the users and looks for best practices. These best practices are
captured as new high-level patterns and added to the group’s pattern collection.
By that way, the pattern collection evolves to a group memory of design and
tailoring knowledge for the specific groupware application.

During a project life-cycle, the different types of iterations will have different
importance, as indicated in figure 2. At the project start, the team will start
with the conceptual iterations. When first requirements emerge, the development
iterations will start, while the conceptual iterations become less important. When

Empowering End-Users 83

In the development iterations, the SIGs developed more detailed task cards
together with the software developers. Patterns served as metaphors for talking
about the system (R4) and helped the users to focus on one aspect at a time for
each task card (R2). The users were asked to shop cards that were considered as
most important. This led to a ranking of cards for each scenario. The gardener
merged the cards from the different scenarios and the developers implemented
the tasks described on the cards by adapting the patterns to their groupware
context (R6).

After the first development iteration (approx. 2 weeks of development), teach-
ers started to use the system and entered tailoring iterations. They did functional
tests of the first prototypes and requested new functionality (R2). The latter was
supported by their knowledge of system design that was based on groupware de-
sign patterns (R4). They also started to reflect on their activities following the
principle of diagnosis (R1). In the early phases of the project, these requests
were escalated to the developers. In the later phases where tailoring mechanisms
had evolved, they appropriated the system on their own (R7), including the
composition of communication and collaboration technology as well as the tai-
loring of collaboration spaces. The pattern scout started to observe the users at
this phase of the project. He looked for best practices and asked the users to
share these practices with other users (R8). After the first major release, ap-
prox. 300 students started to use the system and were also asked to participate
in development iterations and create task cards (R1, R3).

In all phases of the development, the patterns (and especially the stories from
the patterns) were very helpful for the participating developers and the develop-
ers observed that users started to use the pattern names in their communication.
In cases, where the users were familiar with the patterns, they actively proposed
implementing specific patterns (R4).

In summary, the application of the OSDP fulfilled all of our requirements.
End-users reflected on their activities (R1). Due to the short development it-
erations end-users early tested a first prototype and requested additional func-
tionality (R2). R3 was fulfilled, as in the beginning of the project three times
more end-users than developers actively participated in the requirements itera-
tions. The used pattern language served as a shared language for developers and
end-users to discuss the system and to request new functionality (R4 and R5).
The developers used the patterns as guideline to implement the identified story
cards (R6). R7 was satisfied as the end-users could tailor the resulting system to
their own needs. Finally, R8 was satisfied as the pattern scout identified several
patterns that were added to the pattern collection.

A Pattern Sequence in the CURE Project. In this section we report on
a sequence of patterns as it was used during the iterations of the OSDP when
developing the CURE system. Fig. 3 shows parts of the used pattern collection,
relations between the patterns (as arrows) and the pattern sequence (visualized
by a thick gray line). The numbers show which pattern was used at which point
in the process.

84 T. Schümmer, S. Lukosch, and R. Slagter

Find the Guru

Bell

Shared Repository

Remember to Forget

Intent: Show who is using a collaborative
application.

User Profile

Elephant’s Brain

Change Log

Room

Intent: Provide the group with a place, where they can
meet for collaboration.

User Gallery

Gaze Over the Shoulder

Presence Indicator

Change Warning

Who am I

Intent: Store information on the users’ activities in a log
to allow the users to understand (other) users’ activities
and the artifacts’ evolution.

Physical Metaphors

Physical Metaphor

Timeout

User Model Definition

Edition

User List

Hello Hello

Command

Hall of Fame

Shared Workspace

Door

Proxy Object

Local Awareness

Session

Letter of
Recommendation

Buddy List

Intent: Show who is currently participating in a
session.

Birds of a Feather

Virtual Me

Intent: Provide the users with tightly coupled tools,
where they can collaboratively perform their activities.

Remote Subscription

Intent: Detect a client’s malfunction by defining
upper bounds for the execution time of a specific
function.

Intent: Provide awareness information in the context
of the artifact, which is in the local user’s focus.3

2

6

5

7

4

1

8

Intent: List new members of a group or
community at a prominent place and
introduce them to other members.

Fig. 3. A part of the pattern collection used in the CURE project

The initial metaphor for CURE was that of a Shared Workspace ①. Users
should be allowed to access, modify, and store pages (the learning material) in
a folder structure. The access to the pages should be managed for each folder.
Pages may either be directly edited using a simple WIKI-like syntax, or they
may contain binary documents or artifacts. In particular, the syntax supports
links to other pages, external URLs, or mail addresses. The server stores all
artifacts to support collaborative access.

The shared workspace metaphor soon showed to be insufficient for the CURE
system. The users and the development team had problems in distinguishing
mechanisms for user access management, document storage, and learning mate-
rial (as content of the documents) and structuring their interaction.

Empowering End-Users 85

The problems of the shared workspace metaphor were addressed with the
Room ② pattern. By modeling the learning environment with rooms, users could
understand the difference between structuring the virtual learning environment
and interacting within the environment. Users, who are in the same room can
access all pages that are contained in the room. Changes of these pages are visible
to all members in the room. The Room ② pattern served as the most important
metaphor during the following development. Four months after the development
of the first room, a mailbox was added to allow asynchronous communication.
Another three months later, the rooms were equipped with a persistent chat that
was always visible to users present in the room.

The Elephant’s Brain ⑤ was demanded by the developers, not by the
end-users. Nevertheless, the forces that led the developers to the Elephant’s
Brain were brought up by the users. Users wanted to have a User List ③ that
visualizes Local Awareness ④. To provide local awareness, the CURE system
needed means to track a user’s current position. Activities performed by a user
(read accesses and changes to pages) were stored in a central repository, the
Elephant’s Brain ⑤.

As mentioned above, users regarded it as important to know who else is
currently present in the same room. While discussing the Local Awareness ④
pattern, it became clear that users considered it as more important to see the
users, who are currently in the same room. The confocal users calculated by the
Local Awareness ④ pattern were shown in a user list. To keep the data of the
User List ③ up to date, the developers brought up the use of the Timeout ⑥

which allows to detect a client’s malfunction. In a first iteration, this list was a
textual list of user names. In later iterations, the user names were replaced by
the user’s picture.

This sequence only reports on a small number of patterns used during the
different iterations of the OSDP. However, it shows how patterns provide a shared
language between developers and end-users to identify requirements and express
the core concepts of the developed system.

A Close Look on Tailoring. The effect of tailoring iterations can be illus-
trated by looking at the user group of the psychology department that used
CURE for virtual seminars. They expressed two new needs while using CURE:
A better support for familiarizing with their seminar participants and a way
to introduce new users to other students. In the following, we present how the
psychologists approached these issues during several tailoring iterations.

For supporting the familiarization between seminar participants, the psy-
chologists implemented the User Gallery ⑦ by using tailored pages in the
group rooms. These pages included standardized sections in which the users
were asked to introduce themselves. In a later version, a global User Gallery
was added to the system by the developers. This example shows how users ap-
plied the patterns to shape their group rooms (R7), which then matured to a
system component.

For the second issue, the psychologists followed the Hello, Hello pattern
⑧. Therefore, they had to define a special welcome area in which the introduction

86 T. Schümmer, S. Lukosch, and R. Slagter

could take place. The welcome area was defined both by its time (in the early
phases of the seminar) and by its location (a special initial page on which the
participants should introduce themselves). By providing the users with a location
for introducing themselves and with a phase of the seminar, the social process
(how to interact in CURE) was adapted to the specific goal (that of the Hello,
Hello pattern).

6 Conclusions

The lack of end-user participation when designing groupware can lead to invalid
requirements as well as a low end-user acceptance of the resulting groupware
system. In this paper, we analyzed design theories and their impact in terms of
requirements on a groupware design process. We compared these requirements
with existing process models for groupware design and showed that none of the
existing process models completely fulfills these requirements.

Based on this observation, we proposed the application of the Oregon Soft-
ware Development Process (OSDP) in the context of groupware development.
It fosters end-user participation, pattern-oriented transfer of design knowledge,
piecemeal growth in form of short iterations, and frequent diagnosis or reflection
that leads to an improved application.

Finally, we showed how OSDP fulfills all identified requirements by reporting
on its use in an interdisciplinary groupware development project. During this
project, end-users actively participated in the design of the groupware system
by communicating their requirements to the developers and reflecting their own
context. Especially, during the tailoring iterations the end-users applied patterns
from the pattern language in order to adapt their groupware to their emerging
needs. The resulting groupware has a high end-user acceptance with currently
about 1100 active users.

As mentioned in the description of the process, the development of off-the-
shelf groupware complicates the selection and involvement of end-users. We have
briefly proposed ways how this could be done. These proposals should be tested
in the context of off-the-shelf groupware development.

Additional plans for future work include the application of OSDP in in-
dustrial settings. We are also experimenting with the process’s applicability in
educational settings. Both settings will help us to further investigate the process’
impact on educating end-users and novice developers in groupware development.

References

1. Alexander, C., Silverstein, M., Angel, S., Ishikawa, S., Abrams, D.: The Oregon
Experiment. Oxford University Press, New York (1980)

2. Schümmer, T., Slagter, R.: The oregon software development process. In: Pro-
ceedings of XP2004. (2004)

3. Heidegger, M.: Sein und Zeit. 17 (1993) edn. Niemeyer, Tübingen (1927)
4. Alexander, C.: Notes on the Synthesis of Form. 7 (2002) edn. Harvard University

Press, Cambridge, Massachusetts (1964)

Empowering End-Users 87

5. Rittel, H.W.J., Webber, M.M.: Dilemmas in a general theory of planning. Policy
Sciences 4 (1973) 155–169

6. Alexander, C.: A city is not a tree. ARCHITECTURAL FORUM 122 (1965)
58–62

7. Alexander, C.: The timeless way of building. Oxford University Press, New York
(1979)

8. Schön, D.A.: The Reflective Practictioner: How Professionals Think in Action.
Basic Books, New York (1983)

9. Schuler, D., Namioka, A.: Participatory design: Principles and Practices. Erlbaum,
Hillsdale N.J. (1993)

10. Bjerknes, G., Bratteteig, T.: User participation and democracy: a discussion of
scandinavian research on systems development. Scand. J. Inf. Syst. 7 (1995) 73–98

11. Naur, P., Randell, B., eds.: Software Engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch, Germany, Brussels (1969), Scientific
Affairs Division (1968)

12. Boehm, B.W.: Software engineering. IEEE Trans. Computers (1976) 1226–1241
13. Boehm, B.W.: A spiral model of software development and enhancement. IEEE

Computer 21 (1988) 61–72
14. Jacobson, I., Booch, G., Rumbaugh, J.: Unified Software Development Process.

Addison-Wesley (1999)
15. Beck, K.: eXtreme Programming Explained. Addison Wesley, Reading, MA, USA

(1999)
16. Muller, M.J., Kuhn, S.: Participatory design. Communications of the ACM 36

(1993) 24–28
17. Kahler, H., Mørch, A., Stiemerling, O., Wulf, V.: Tailorable systems and coopera-

tive work (introduction). Special Issue of Computer Supported Cooperative Work
9 (2000)

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA (1995)

19. Borchers, J.: A Pattern Approach to Interaction Design. John Wiley and Sons
Ltd. (2001)

20. Rossi, G., Garrido, A., Carvalho, S.: Design patterns for object-oriented hyper-
media applications. In Vlissides, J.M., Coplien, J.O., Kerth, N.L., eds.: Pattern
Languages of Program Design 2. Addison-Wesley Addison-Wesley, Reading, MA,
USA (1995) 177–191

21. Eckstein, J.: Workshop report on the pedagogical patterns project: Successes in
teaching object technology. In: Proceedings of OOPSLA’99 Educator’s Symposium,
Denver (1999)

22. Erickson, T.: Lingua francas for design: sacred places and pattern languages. In:
Proceedings of the conference on Designing interactive systems, ACM Press (2000)
357–368

23. Dewan, P.: An integrated approach to designing and evaluating collaborative ap-
plications and infrastructures. Computer Supported Cooperative Work 10 (2001)
75–111

24. Fitzpatrick, G.A.: The Locales Framework: Understanding and Designing for Co-
operative Work. PhD thesis, Department of Computer Science and Electrical En-
gineering, The University of Queensland (1998)

25. Grudin, J.: Groupware and social dynamics: eight challenges for developers. Com-
munications of the ACM 37 (1994) 92–105

88 T. Schümmer, S. Lukosch, and R. Slagter

26. Slagter, R., Biemans, M., Ter Hofte, G.H.: Evolution in use of groupware: Facilitat-
ing tailoring to the extreme. In: Proceedings of the CRIWG Seventh international
Workshop on Groupware, Darmstadt, IEEE Computer Society Press (2001) 68–73

27. Teege, G.: Users as composers: Parts and features as a basis for tailorability in
cscw systems. Computer Supported Cooperative Work (CSCW) 9 (2000) 101–122

28. Fernandez, A., Haake, J.M., Goldberg, A.: Tailoring group work. In Haake, J.M.,
Pino, J.A., eds.: Proceedings of the CRIWG’2002 – 8th International Workshop
on Groupware. LNCS 2440, La Serena, Chile, Springer-Verlag Berlin Heidelberg
(2002) 232–242

29. Wulf, V., Rohde, M.: Towards an integrated organization and technology develop-
ment. In: DIS ’95: Proceedings of the conference on Designing interactive systems,
ACM Press (1995) 55–64

30. Wulf, V., Krings, M., Stiemerling, O., Iacucci, G., Fuchs-Fronhofen, P., Hinrichs,
J., Maidhof, M., Nett, B., Peters, R.: Improving inter-organizational processes
with integrated organization and technology development. Journal of Universal
Computer Science 5 (1999) 339 – 365

31. Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B., Shipman,
F.: Seeding, evolutionary growth and reseeding: The incremental development
of collaborative design environments. In Olson, G., Malone, T., Smith, J., eds.:
Coordination Theory and Collaboration Technology, Lawrence Erlbaum Associates
(2001) 447–472

32. Floyd, C., Reisin, F.M., Schmidt, G.: Steps to software development with users.
In: ESEC ’89: Proceedings of the 2nd European Software Engineering Conference,
Springer-Verlag (1989) 48–64

33. Lukosch, S., Schümmer, T.: Patterns for managing shared objects in groupware
systems. In: Proceedings of the 9th European Conference on Pattern Languages
and Programs, Irsee, Germany (2004) 333–378

34. Schümmer, T.: Patterns for building communities in collaborative systems. In:
Proceedings of the 9th European Conference on Pattern Languages of Programs
(EuroPLoP’04), Irsee, Germany, UVK, Konstanz, Germany (2004) 379–440

35. Rittenbruch, M., McEwan, G., Ward, N., Mansfield, T., Bartenstein., D.: Extreme
participation - moving extreme programming towards participatory design. In
Binder, T., Gregory, J., , Wagner, I., eds.: Participation and Design: Inquiring Into
the Poltics, Contexts and Practices of Collaborative Design Work – PDC 2002
Proceedings of the Participatory Design Conference, Malmo, Sweden (2002)

36. Haake, J.M., Haake, A., Schümmer, T., Bourimi, M., Landgraf, B.: End-user
controlled group formation and access rights management in a shared workspace
system. In: CSCW’04: Proceedings of the 2004 ACM conference on Computer
supported cooperative work, Chicago, Illinois, USA, ACM Press (2004) 554–563

Integrating Synchronous and Asynchronous
Interactions in Groupware Applications�

Nuno Preguiça, J. Legatheaux Martins, Henrique Domingos, and Sérgio Duarte

CITI/DI, FCT, Universidade Nova de Lisboa,
Quinta da Torre, 2845 Monte da Caparica, Portugal

Abstract. It is common that, in a long-term asynchronous collaborative
activity, groups of users engage in occasional synchronous sessions. In this
paper, we discuss the data management requirements for supporting this
common work practice. As users interact in different ways in each setting,
requirements and solutions often need to be different. We present a data
management system that allows to integrate a synchronous session in
the context of a long-term asynchronous interaction, using the suitable
data sharing techniques in each setting and an automatic mechanism to
convert the long sequence of small updates produced in a synchronous
session into a large asynchronous contribution. We exemplify the use of
our approach with two multi-synchronous applications.

1 Introduction

Groupware applications are commonly classified as synchronous or asynchronous
depending on the type of interaction they support. Synchronous applications sup-
port closely-coupled interactions where multiple users synchronously manipulate
the shared data. In synchronous sessions, all users are immediately notified about
the updates produced by other users. At the data management level, it is usu-
ally necessary to maintain multiple copies of the data synchronized in realtime,
merging all concurrent updates produced by the users. Several general-purpose
systems have been implemented [25,28,26].

Asynchronous applications support loosely-coupled interactions where users
modify the shared data without having immediate knowledge of the updates pro-
duced by other users. At the data management level, it is common to support a
model of temporary divergence among multiple, simultaneous streams of activ-
ity [4] and to provide some mechanism to automatically merge these streams of
activity. Some general-purpose (e.g. [18,5]) and application-specific (e.g. [17] for
document editors) systems have been implemented.

A common work practice among groups of individuals seeking a common
goal is to alternate periods of closely-coupled interaction with periods of loosely-
coupled work. During the periods of closely-coupled interaction, group elements
can coordinate and create joint contributions. Between two periods of close in-
teraction, individuals tend to produce their individual contributions in isolation.
� This work was partially supported by FCT/MCTES through POSI/FEDER.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 89–104, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

90 N. Preguiça et al.

In this paper, we address the data management problems of supporting this
type of work practice in groupware applications, dubbed as multi-synchronous
applications. We describe the three main mechanisms we have used to add sup-
port for synchronous sessions in the DOORS system [21], a replicated storage
system designed to support asynchronous groupware.

First, a mechanism to allow applications to synchronously manipulate the
data stored in the data management system. Second, a mechanism that allows
to use different reconciliation and awareness techniques in each setting, as needed
by some applications (e.g.: text editing systems tend to use operational transfor-
mation [8] in synchronous settings, and versioning [2,3] in asynchronous settings).
Finally, a mechanism to automatically convert long sequences of synchronous op-
erations into a small sequence of asynchronous operations. This mechanism is
needed to accommodate the difference of granularity in the operations used in
each setting (e.g. in text editing systems, insert/remove character operations are
used in synchronous settings, and update text line/paragraph/section operations
are usually used in asynchronous settings).

The remainder of this paper is organized as follows. Section 2 discusses the
requirements and presents the design choices used for supporting applications in
synchronous and asynchronous settings. Section 3 present the DOORS system,
detailing the integration of synchronous and asynchronous interactions. Section 4
presents multi-synchronous applications implemented in our system. Section 5
discusses related work and Sect. 6 concludes the paper with some final remarks.

2 Design Options

In this section we present the design options used to integrate synchronous in-
teractions in an object-based system designed to support the development of
asynchronous groupware applications. We start by reviewing the basic require-
ments that must be addressed to support each type of interaction independently.

2.1 Basic Requirements and Design Options

Synchronous Interaction: In synchronous applications, users access and mod-
ify the shared data in realtime. To this end, a common approach is to allow
several applications running on different machines to maintain replicas of the
shared data. When an update is executed in any replica, it must be immedi-
ately propagated to all other replicas. To achieve this requirement, our support
for synchronous replication lies on top of a group-communication infrastructure
and includes support for latecomers, as it is usual in synchronous groupware.

The user interface of the synchronous application must be updated not only
when the local user updates the shared data, but also whenever any remote
user executes an update. To this end, our system allows applications to register
callbacks for being notified of changes in the shared data. These callbacks are
used to update the GUI of the application. This approach allows a synchronous
application to be implemented using the popular model-control-view pattern,
with the model replicated in all participants.

Integrating Synchronous and Asynchronous Interactions 91

Asynchronous Interaction: In asynchronous interactions, users collaborate
by accessing and modifying shared data. To maximize the chance for collabora-
tion, it is usually important to allow users to access and modify the shared data
without restrictions (besides access control restrictions). To provide high data
availability, our system combines two main techniques. First, it replicates data
in a set of servers to mask network and server failures. Second, it partially caches
data in mobile clients to mask disconnections. High read and write availability
is achieved using a “read any/write any” model of data access that allows any
clients to modify the data independently.

This optimistic approach leads to the need of handling divergent streams of
activity (caused by independent concurrent updates executed by different users).
Several reconciliation techniques have been proposed in different situations (e.g.
the use of undo-redo [15], versioning [3], operational transformation [8,30,31],
searching the best solution relying on semantic information [23]) but no single
technique seems appropriate for all problems. Instead, different groups of ap-
plications call for different strategies. Thus, unlike most systems [7,3,18] that
implement a single customizable strategy, our system allows different applica-
tions to use different reconciliation techniques.

Awareness has been identified as important for the success of collaborative
activities because individual contributions may be improved by the understand-
ing of the activities of the whole group [6,12]. Our system includes an integrated
mechanism for handling awareness information relative to the evolution of the
shared data. Different strategies can be used in different applications, either
relying on explicit notification, using a shared feedback approach [6], or com-
bining both styles. Further details on the requirements and design choices for
asynchronous groupware in mobile computing environments are presented else-
where [21].

2.2 Integrating Synchronous and Asynchronous Interactions

An asynchronous groupware activity tends to span over a long period of time.
During this period, each participant can produce his contributions indepen-
dently. Groups of participants can engage in synchronous interactions to pro-
duce a joint contribution. Thus, it seems natural to consider the result of a
synchronous interaction as a contribution in the context of the long-term col-
laborative process. We address the specific requirements for implementing this
strategy in our object-based system in the remaining of this section.

Updates with Different Granularities: Some applications use operations
with different granularities in synchronous and asynchronous settings. For exam-
ple, consider collaborative editing systems1. Synchronous editors (e.g. Grove [8],
REDUCE [32]) allow multiple users to modify a shared document by executing
operations to insert or remove a single character. These operations are imme-
diately propagated and executed in all users’ replicas. In contrast, systems for
1 Similar situations occur for other applications (e.g. conferencing systems, graphical

editors), as discussed in [22].

92 N. Preguiça et al.

asynchronous settings (e.g.: CVS [3], Iris [17]) tend to use a copy-modify-merge
paradigm, where reconciliation of divergent replicas is achieved by considering
updates on large regions (e.g.: lines in CVS and document elements in Iris).

One reason for this situation is the difference in the level of expected aware-
ness. In synchronous settings, users expect to have immediate knowledge about
all other users’ updates. Thus, all update operations must be propagated. In
asynchronous settings, users are expected to work in isolation without having
immediate knowledge of the modifications produced by other users. Therefore,
coarse-grain updates can be propagated when a user finishes a working session.

Two additional reasons exist. The first is related with the reconciliation tech-
niques used in each setting and it will be discussed later. The second reason is
related with the technical difficulty of managing a very large number of small
operations. For each operation, an excessive amount of data is created (including
the type and parameters of the operation and information to order and trace de-
pendencies among operations – the problem of reducing the information needed
to trace dependencies is only partially addressed in [27]). This poses problems
in terms of storage, network bandwidth and complexity of the reconciliation
process.

The above reasons suggest that the granularity of operations used in each
setting should be different: small for synchronous settings and large for asyn-
chronous settings. To this end, our system includes a mechanism to compress
the log of small operations executed by users. During a synchronous interaction,
the small operations are incrementally converted and compressed in a small se-
quence of large operations in background. This sequence of large operations is
the result of the synchronous session and it is integrated in the asynchronous
collaborative process as any contribution produced by a single user.

Different Reconciliation and Awareness Techniques: In some applica-
tions, different reconciliation and awareness techniques are used in synchronous
and asynchronous settings. For example, in collaborative text editors, opera-
tional transformation [8,30,14] has become the reconciliation technique of choice
in synchronous mode while versioning [3,18,2] is used in asynchronous mode. To
understand the reason for this difference, it is important to understand the lim-
itations of each technique and how users interact to overcome such limitations.

It is known that operational transformation can lead to semantic inconsis-
tencies [30,19] when concurrent updates are executed. The following example
illustrates the problem. Suppose that a document contains: There will be stu-
dent here. In this text there is a grammatical error that can be corrected by
replacing “student” by “a student” or “students”. If two users concurrently ex-
ecute these different changes, operational transformation leads to: There will be
a students here. The result is semantically incorrect, as it contains a new error.
Moreover, the merged version does not represent any of the users’ solutions and
it is likely that it does not satisfy any of the users.

In synchronous settings, this problem can be easily solved as users immedi-
ately observe all concurrent modifications. Thus, users can coordinate themselves
and immediately agree on the preferred change. This is only possible because

Integrating Synchronous and Asynchronous Interactions 93

users have strong and fine-grain awareness information about the changes pro-
duced by other users. In this case, the automatic creation of multiple versions
to solve conflicts would involve unnecessary complexity. Moreover, it is not clear
which user interface widgets to use for presenting these multiple versions.

In asynchronous settings, updates are not immediately merged and each con-
tribution tends to be large. Thus, as users have no (strong) awareness information
about the updates produced by other users, it is likely that using operational
transformation to merge concurrent updates to the same semantic unit would
lead to many semantic inconsistencies. This is the main reason for not using
this technique in asynchronous editing systems: it seems preferable to maintain
multiple semantically correct versions and let users merge them later, instead of
a single semantically incorrect version that does not satisfy anyone.

Regarding awareness, the difference in the used techniques is an immediate
consequence of the coupling degree. In synchronous settings, users must have im-
mediate feedback about other users’ actions. Thus, very accurate and detailed
information must be constantly disseminated and presented to users. In asyn-
chronous settings, it is common that users only need to know what changes have
been produced recently (and what users may be editing the document). Thus,
it is often sufficient to maintain with each document a log that describes the
changes produced by each user in each isolated working-session (e.g. CVS [3]).

A system that supports synchronous and asynchronous interactions should
accommodate different reconciliation and awareness techniques for each settings.
To this end, we structure data objects used in collaborative applications accord-
ing to an object framework that includes independent components to handle
most aspects related with data sharing, including reconciliation and awareness
management. Thus, for each data type, the programmer may specify a different
technique (component) to be used in each setting.

As discussed earlier, our system allows to use operations with different granu-
larities in each setting by automatically converting the operations. This approach
is important for reconciliation as the techniques used in each setting expect op-
erations with different granularities. It is also important for awareness support,
as the granularity of awareness information needed in each setting is closely re-
lated with the granularity of operations. In our system, the awareness component
handles the awareness information produced when an operation is executed.

3 DOORS

In this section, we start by briefly presenting the DOORS system architecture
and the DOORS object framework. A more detailed description, discussing sup-
port for asynchronous groupware, can be found in [21]. Then, we detail the
integration of synchronous sessions in the overall asynchronous activity.

3.1 Architecture

DOORS is a distributed object store based on an “extended client/replicated
server” architecture. It manages coobjects: objects structured according to the

94 N. Preguiça et al.

Key
 Server

 Client

Sub-objects

 Application

sub-objects

updates

epidemic
propagation

sub-objects

updates

sub-objects
& updates sync sessions

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

A
w

ar
en

es
s

sub-objects sub-object proxies

A
pp

lic
at

io
n

System

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

a) b)

Fig. 1. DOORS architecture (a) with four computers with different configurations.
Coobjects are replicated by servers, partially cached by clients and manipulated by
applications. Coobjects are structured according to the DOORS object framework (b).

DOORS object framework. A coobject represents a data type designed to be
shared by multiple users, such as a structured document or a shared calendar.
A coobject is designed as a cluster of sub-objects, each one representing part
of the complete data type (e.g. a structured document can be composed by one
sub-object that maintains the structure of the document and one sub-object
for each element of the structure). Each sub-object may still represent a com-
plex data structure and it may be implemented as an arbitrary composition of
common objects. Besides the cluster of sub-objects, a coobject contains several
components that manage the operational aspects of data sharing — Fig. 1.b
depicts the approach (we describe each component and how they work together
later).

Figure. 1.a depicts the DOORS architecture, composed by servers and clients.
Servers replicate workspaces composed by sets of related coobjects to mask net-
work failures/partitions and server failures. Server replicas are synchronized dur-
ing pair-wise epidemic synchronization sessions. Clients partially cache key coob-
jects to allow users to continue their work while disconnected. A partial copy of
a coobject includes only a subset of the sub-objects (and the operational com-
ponents needed to instantiate the coobject). Clients can obtain partial replicas
directly from a server or from other clients.

Applications run on client machines and access data using a “get/modify
locally/put changes” model. First, the application obtains a private copy of the
coobject (from the DOORS client). Second, it invokes sub-objects’ methods to
query and modify its state – update operations are transparently logged in the
coobject. Finally, if the user chooses to save her changes, the logged sequence of
operations is (asynchronously) propagated to a server.

When a server receives operations from a client, it delivers the operations to
the local replica of the coobject. It is up to the coobject replica to store and
process these operations. Servers synchronize coobject replicas by exchanging
unknown operations during pairwise epidemic synchronization sessions.

Integrating Synchronous and Asynchronous Interactions 95

3.2 DOORS Object Framework

As outlined above, the DOORS system core executes minimal services and it del-
egates on the coobjects most of the aspects related with data sharing, including
reconciliation and the handling of awareness information. To help programmers
to create new applications reusing good solutions, we have defined an object
framework that decomposes a coobject in several components that handle dif-
ferent operational aspects (see Fig. 1.b). We now outline this object framework,
introducing each component in the context of the local execution of an operation.

Each coobject is composed by a set of sub-objects that may reference each
other using sub-object proxies. These sub-objects store the internal state and
define the operations of the implemented data-type. The cluster manager is
responsible to manage the sub-objects that belong to the coobject.

Applications always manipulate a coobject using sub-objects’ proxies. When
an application invokes a method on a sub-object proxy, the proxy encodes the
method invocation (into an object that includes all needed information) and
hands it over to the adaptation component. The adaptation component is re-
sponsible for interactions with remote replicas. The most common adaptation
component executes operations locally.

The capsule component controls local execution of operations. Queries are
immediately executed in the respective sub-object and the result is returned to
the application. Updates are logged in the log component. When an operation is
logged, the capsule calls the concurrency control component to execute it.

The concurrency control/reconciliation component is responsible to execute
the operations stored in the log. In the client, operations are usually executed
immediately. The result of this execution is tentative [7]. An update only affects
the official state of a coobject when it is finally executed in the servers. In [21],
we have discussed extensively how to use different reconciliation strategies (com-
ponents) in the context of asynchronous groupware applications.

The execution of an operation may produce some awareness information. The
awareness component immediately processes this information (e.g. by storing it
to be later presented in applications and/or propagating it to the users).

Besides controlling operation execution, the capsule defines the coobject’s
composition. The composition described in this subsection represents a common
coobject, but different compositions can be defined. The capsule implements the
interface used by the system to access the coobject. The attributes component
stores the system and type-specific properties of the coobject.

To create a new data-type (coobject) the programmer must do the following.
First, he must define the sub-objects that will store the data state and define the
operations (methods) to query and to change that state. From the sub-objects’
code, a pre-processor generates the code of sub-object proxies and factories used
to create new sub-objects, handling the tedious details automatically. Second, he
must define the coobject composition, selecting the suitable pre-defined compo-
nents (or defining new ones if necessary). Different components can be specified
for use in the server and in the client during private and shared (synchronous)
access. Different data-sharing semantics are obtained using different components.

96 N. Preguiça et al.

3.3 Integration of Synchronous Sessions

In this subsection we detail the integration of synchronous sessions in the overall
asynchronous activity.

Manipulate Coobjects in Synchronous Sessions: Each site that partic-
ipates in a synchronous session usually maintains its own copy of the shared
data. To this end, we need to maintain several copies of a coobject synchronously
synchronized.

To achieve this goal, we use the synchronous adaptation component that
propagates updates executed in any replica to all replicas. This component relies
on a group communication sub-system (GCSS) – JGroups [1] in the current
implementation – for managing communications among session participants.

An application (user) may start a synchronous session in a client when it
loads a coobject from the data storage. In this case, the coobject is instantiated
with the components specified for shared access in the client. In particular, a
version of the synchronous adaptation component must be used. This component
creates a new group (in the GCSS) for the synchronous session.

When a new user wants to join a synchronous session, the user’s application
has to join the group for the synchronous session (using the name of the session
and the name of one computer that participates in the session). During this
process, the application receives the current state of the coobject (relying on
the state transfer mechanism of the GCSS) and creates a private copy of the
coobject. Any user is allowed to leave the synchronous session at any moment.

In each group there is a designated primary (that can change during the
group lifetime). Besides being responsible to save the result of the synchronous
session, the primary plays an important role in the instantiation of sub-objects.
When the cluster manager of any replica needs to instantiate a new sub-object,
it asks the primary to send the initial state of the sub-object (as obtained from
the DOORS client) to all replicas. This approach guarantees that all replicas
instantiate all sub-objects in a coherent way.

Applications manipulate coobjects by executing operations in sub-objects’
proxies, as usual. The proxy encodes the operation and delivers it to the adapta-
tion component for processing. Query operations are processed locally as usual.
For an update operation, the adaptation component propagates the operation
to all elements of the synchronous session using the GCSS (step 2 of Fig. 2).

The GCSS may deliver operations in the same total order or in FIFO order
to all replicas. When the operation is received in (the adaptation component of)
a replica, including the replica where it has been initially executed, its execution
proceeds as usual (by handing the operation to the capsule for local execution, as
explained in Sect. 3.2). When total order is used, replicas are kept consistent by
simply executing all operations by the order they are received. When FIFO order
is used, no delay is imposed on local operations, but replicas receive operation in
different order. Thus, it is usually necessary to use an operational transformation
reconciliation component to guarantee replica convergence.

To update the application GUI, an application may register callbacks in the
adaptation component to be notified when sub-objects are modified due to op-

Integrating Synchronous and Asynchronous Interactions 97

A
w

ar
en

es
s A
pp

lic
at

io
n

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

A
pp

lic
at

io
n

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

 A
pp

lic
at

io
n

A
da

pt
at

io
n

Cluster
manager

A
ttr

ib
ut

es

Capsule

C
on

cu
rr

en
cy

co

nt
ro

l

L
og

A
w

ar
en

es
s

A
w

ar
en

es
s

2
Group communication
system

1

3

4 5

6

7

8

9

3

4 5

6

7

8

9

3

4 5

6

7

8

9

Fig. 2. Synchronous processing of an update operation in three replicas of a coobject

erations executed by remote users (or local users). These callbacks are called by
the adaptation component when the execution of an operation ends (step 9).

The DOORS approach to manage synchronous interactions, described in this
subsection, does not imply any contact with the servers. An application running
on a DOORS client can participate in a synchronous session if it can communi-
cate with other participants using the underlying GCSS. Thus, a group of mobile
clients, disconnected from all servers, may engage in a synchronous interaction
even when they are connected using an ad hoc wireless network.

Saving the Result of a Synchronous Interaction as an Asynchronous
Contribution: As discussed in Sect. 2.2, some applications need to convert the
small operations used in synchronous mode into the large operations used in
asynchronous mode.

In the DOORS system, this is achieved by the log compression mechanism
implemented by the log component. As described in Sect. 3.2, all update oper-
ations executed in a synchronous session are stored in the log before being exe-
cuted. Besides the full sequence of operations, the log component also maintains
a compressed version of this sequence. An operation is added to the compressed
sequence after being stably executed (and after the reconciliation component
executes the last undo or transformation to the operation) using the algorithm
presented in Fig. 3. This process is executed in background to have minimal
impact on the performance of the synchronous session.

98 N. Preguiça et al.

Compress (seqOps: list, newOp: operation) =

FOR i:= seqOps.size - 1 TO 0 DO

IF Compress(seqOps, i, newOp) THEN RETURN seqOps

ELSE IF NOT Commute(seqOps.get(i), newOp) THEN BREAK

END FOR

seqOps.add(ConvertToLarge(newOp))

RETURN seqOps

Fig. 3. Algorithm used for log-compression

The basic idea of the algorithm is to find out an operation already in the
log that can compress the new operation (e.g. an insert/remove operation in a
text element can be integrated into an operation that sets a new value to the
text element by changing the value of the text). If no such operation exists,
the new operation is converted into an asynchronous operation and logged (e.g.
an insert/remove operation can be converted into an operation that sets a new
value to the text element – the value of the text after being modified).

To use this approach, the coobject must define the following methods of
the compression algorithm: Compress, for merging two operations; Commute,
for testing if the result of executing two operations does not depend on the
execution order; ConvertToLarge, for converting a small synchronous operation
into a large asynchronous operation The examples presented in the next section
show that these methods are usually simple to write.

The result of the synchronous session is the compressed sequence of opera-
tions. Only the designated primary can save the result of the session. In respect
to the overall evolution of the coobject, the sequence of operations is handled in
the same way as the updates executed asynchronously by a single user. Thus,
the sequence of operations is propagated to the servers, where it is integrated
according to the reconciliation policy that the coobject uses in the server.

Using Different Reconciliation and Awareness Strategies: As discussed
in Sect. 2.1, some applications need to use different reconciliation and awareness
techniques during synchronous and asynchronous interactions. In our system,
different techniques can be used by specifying that a coobject is composed by
different components in the server and during shared access in the client.

The reconciliation and awareness components, defined for use during shared
access, control data evolution and awareness in the synchronous session. The
reconciliation and awareness components, defined for use in the servers, control
behavior during asynchronous interactions, i.e., how stable replicas stored in the
servers evolve and what awareness information is maintained.

4 Applications

In this section, we present two applications that exemplify our approach to
integrate synchronous and asynchronous interactions. These applications and
the DOORS prototype have been implemented in Java.

Integrating Synchronous and Asynchronous Interactions 99

4.1 Multi-synchronous Document Editor

The multi-synchronous document editor allows users to produce structured doc-
uments collaboratively — these documents are represented as coobjects. For
example, users may use a synchronous session to discuss and create the out-
line of the document and to edit controversial parts. Each user may, after that,
asynchronously produce his contributions editing the sections he is responsible.

A document is a hierarchical composition of containers and leaves. Contain-
ers are sequences of other containers and leaves. A single sub-object stores the
complete structure of a document, including all containers. Leaves represent
atomic units of data that may have multiple versions and different data types.
A sub-object that extends the multi-version sub-object stores each leaf.

For example, a LaTeX document has a root container with text leaves and
scope containers. A scope container may also contain text leaves and scope con-
tainers. Scope containers can encapsulate the document structure but they have
no direct association with LaTeX commands. For example, a paper can be repre-
sented as a sequence of scope elements, one for each section (see Fig. 4). The file
to be processed by LaTeX is generated by serializing the document structure.

Asynchronous Edition: During asynchronous edition, users can modify the
same elements independently. The coobject maintains syntactic consistency au-
tomatically, as follows. Concurrent updates to the same text leaf are merged
using the pre-defined strategy defined in its super-class: two versions are cre-
ated if the same version is concurrently modified; a remove version is ignored if
that version has been concurrently modified; otherwise, both updates are con-
sidered. Users should merge multiple versions later. Concurrent changes to the
same container are merged by executing all updates in a consistent way in all
replicas (using an optimistic total order reconciliation component in the server).

structure (modified
elements in red)

versions

chat & sync.
session members

jalm
updates

nmp
updates

Fig. 4. Multi-synchronous document editor with a LaTeX document, while syn-
chronously editing one section

100 N. Preguiça et al.

Synchronous Edition: The multi-synchronous editor allows multiple users to
synchronously edit a document. To this end, a document coobject is maintained
synchronously synchronized using the synchronous adaptation component that
immediately executes operations locally. Thus, users observe their operations
without any delay. For handling reconciliation during a synchronous session, a
reconciliation component that implements the GOTO operational transforma-
tion algorithm [30] is used.

For supporting synchronous edition, a text element also implements opera-
tions to insert/remove a string in a given version. These operations are submitted
when the user writes something in the keyboard or executes a cut or paste op-
eration. Remote changes are reflected in the editor’s interface using the callback
mechanism provided by the adaptation component. For example, Fig. 4 shows a
synchronous session with two users. The selected text version presents updates
from each user with a different color. In the structure and versions windows,
elements that have been modified in the current session are presented in red.

For converting synchronous operations into asynchronous operations, the fol-
lowing rules are used. Operations commute if they act upon different structure
elements or different versions. Otherwise, they do not commute. The update ver-
sion operation compresses insert/remove string operations — the new value of
the version is updated to reflect the insert/remove operations. No other compres-
sion rule is needed for converting a synchronous session into an asynchronous
contribution2. An insert/remove operation can be converted to a large update
version operation, where the new value of the version is the result of applying
the given operation to the current state of the version.

4.2 Multi-synchronous Conferencing Tool

In this section we describe a conferencing tool that allows to integrate discussions
produced in a chat tool as posts in a message board, thus allowing to maintain an
integrated repository of synchronous and asynchronous messaging interactions
produced in the context of some workgroup.

This application maintains a newsgroup-like shared space where users can
post messages asynchronously. A shared space is used to discuss some topic and
it may include multiple threads of discussion. A shared space is represented as a
coobject and each thread is stored in a single sub-object. In each shared space,
there is an additional sub-object that indexes all threads of discussion.

Two operations are defined: create a new thread of discussion with an initial
message and post a (reply) message to an existing thread. The following recon-
ciliation strategy is used in the servers: all updates are executed in all replicas
using a causal order. This approach guarantees that all reply messages are stored
in all replicas before the original message, but it does not guarantee that all mes-
sages are stored in the same order – this is usually considered sufficient in this
context.
2 Additional compression rules are applied as part of the normal log compression

mechanism: create/delete version pairs are removed; add/remove element pairs are
removed; an update version replaces a previous update version.

Integrating Synchronous and Asynchronous Interactions 101

Our tool also allows users to maintain several replicas of a shared space
synchronously synchronized. This is achieved using the synchronous adaptation
component, as before. The reconciliation component executes all operations im-
mediately in a causal order (as in the servers). During synchronous interaction,
users can engage in synchronous discussions that are added to the shared space
as a single reply to the original post — replies are created using a chat tool.

The thread sub-object defines an additional operation for synchronous inter-
actions: add a message to a previous message. When the user decides to start
a new discussion, it issues a post message. This initial post message operation
compresses all following add message operations issued in the synchronous dis-
cussion (by including the new messages). In this case, the other rules needed
for log compression are very simple: two operations, a and b, commute if they
neither modify the same message nor b posts a reply to the message posted by
a, or vice-versa; no rule is need for converting operations as all add messages are
compressed into the initial post message.

5 Related Work

Several systems have been designed or used to support the development of asyn-
chronous groupware applications in large-scale distributed settings (e.g. Lotus
Notes [18], Bayou [7], BSCW [2], Prospero [5], Sync [20], Groove [11]). Our basic
system shares goals and approaches with some of these systems but it presents
two distinctive characteristics. First, the object framework not only helps pro-
grammers in the creation of new applications but it also allows them to use
different data-management strategies in different applications (while most of
those systems only allow the customization of a single strategy). Second, unlike
our system and BSCW, all other systems handle the reconciliation problem but
do not address awareness support. From these systems, three can provide some
integration between synchronous and asynchronous interactions.

In Prospero [5], it is possible to use the concept of streams (that log exe-
cuted operations) to implement multi-synchronous applications (by varying the
frequency of stream synchronization). This approach cannot support application
that need to use different operations or different reconciliation strategies.

In Bayou, a replicated database system, the authors claim that it is “possible
to support a fluid transition between synchronous and asynchronous mode of
operation” [7] by connecting to the same server. However, without a notification
mechanism that allows applications to easily update their interface and relying
on a single replica, it is difficult to support synchronous interactions efficiently.

In Groove [11], some applications can be used in synchronous and asyn-
chronous (off-line) modes. In Sketchpad, the same reconciliation strategy seems
to be used (execute all updates by some coherent order, using a last-writer wins
strategy). This may lead to undesired results in asynchronous interactions as the
overwritten work may be large and important. In this case, it is not acceptable
to arbitrarily discard (or overwrite) the contribution produced by some user,
and the creation of multiple versions seems preferable [29,16].

102 N. Preguiça et al.

Other groupware systems support multi-synchronous interactions. In [10],
the authors define the notion of a room, where users can store objects persis-
tently and run applications. Users work in synchronous mode if they are inside
the room at the same time. Otherwise, they work asynchronously. In [13], the
authors present a multi-synchronous hypertext authoring system. A tightly cou-
pled synchronous session, with shared views, can be established to allow multi-
ple users to modify the same node or link simultaneously. In [24], the authors
describe a distance-learning environment that combines synchronous and asyn-
chronous work. Data manipulated during synchronous sessions is obtained from
the asynchronous repository, using a simple locking or check-in/check-out model.

Unlike DOORS, these systems lack support for asynchronous groupware in
mobile computing environments, as they do not support disconnected operation
(they all require access to a central server). Furthermore, either they do not sup-
port divergent streams of activity to occur during asynchronous edition or they
use a single reconciliation solution (versioning). Our solution is more general,
allowing to use the appropriate reconciliation solutions for each setting.

In [27], the authors propose a general notification system that supports multi-
synchronous interactions by using different strategies to propagate updates. They
also present a specific solution for text editors that implements an operational
transformation (OT) algorithm that solves some technical problems for using OT
in asynchronous settings. However, as discussed in Sect. 2.2, in asynchronous
settings, OT may lead to unexpected results that do not satisfy any user –
creating multiple version seems preferable. Our approach, allowing the use of a
different reconciliation technique in each setting, can address this problem.

In [19], the authors present a brief overview of SAMS, an environment that
supports multi-synchronous interactions using an OT algorithm extended with
a constraint-based mechanism to guarantee semantic consistency. The proposed
approach seems difficult to use and, as the previous one, it does not allow to use
different operations or reconciliation techniques in each setting (as it is important
for supporting some applications).

In [9], the authors present a system that supports both synchronous and
asynchronous collaboration using a peer-to-peer architecture to replicate shared
objects. In this system, replica consistency is achieved in both settings by ex-
ecuting all operations in the same order – an optimistic algorithm using roll
back/roll forward is used. Again, this approach does not address the need of
using different operations and different reconciliation strategies in each setting.

6 Final Remarks

In this paper, we have presented a model to integrate synchronous and asyn-
chronous interactions in mobile computing environments. Our approach is built
on top of the DOORS replicated object store, that supports asynchronous group-
ware relying on optimistic server replication and client caching.

To integrate synchronous sessions in the overall asynchronous activity we
address the three main problems identified as important in the discussion of

Integrating Synchronous and Asynchronous Interactions 103

Sect. 2. First, our system maintains multiple replicas of the data objects stored
in the DOORS repository synchronized in realtime. To this end, we rely on a
group communication infrastructure to propagate all operations to all replicas.

Second, our system addresses the problem of using different reconciliation
and awareness strategies in different settings. To this end, the programmer may
use an extension to the DOORS object framework that allows to use different
reconciliation and awareness components in each setting.

Finally, it addresses the problem of using operations with different granu-
larities for propagating updates in synchronous and asynchronous settings. To
this end, it integrates a compression algorithm that converts a long sequence
of small operations used in synchronous settings into a small sequence of large
operations.

The combination of these mechanisms allows our system to provide support
for multi-synchronous applications – the applications presented in Sect. 4 ex-
emplify the use of the proposed approach. To our knowledge, our system is the
only one to provide an integrated solution for all those problems in a replicated
architecture that supports disconnected operation. More information about
the DOORS system is available from http://asc.di.fct.unl.pt/dagora/.
DOORS code is available on request.

References

1. JGroups. http://www.jgroups.org.
2. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor, and

G. Woetzel. Basic Support for Cooperative Work on the World Wide Web. Int.
Journal of Human Computer Studies, 46(6):827–856, 1997.

3. P. Cederqvist, R. Pesch, et al. Version Management with CVS.
http://www.cvshome.org/docs/manual.

4. P. Dourish. The parting of the ways: Divergence, data management and collabo-
rative work. In Proc. of the European Conf. on Computer-Supported Cooperative
Work (ECSCW’95), 1995.

5. P. Dourish. Using metalevel techniques in a flexible toolkit for CSCW applications.
ACM Trans. on Computer-Human Interaction (TOCHI), 5(2):109–155, 1998.

6. P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In
Proc. of the 1992 ACM Conf. on Computer-supported cooperative work, 1992.

7. W. Edwards, E. Mynatt, K. Petersen, M. Spreitzer, D. Terry, and M. Theimer.
Designing and implementing asynchronous collaborative applications with Bayou.
In Proc. of the ACM Symp. on User interface software and technology, 1997.

8. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Proc.
of the 1989 ACM SIGMOD Int. Conf. on Management of data, 1989.

9. W. Geyer, J. Vogel, L.-T. Cheng, and M. Muller. Supporting activity-centric col-
laboration through peer-to-peer shared objects. In Proc. of the 2003 ACM Conf.
on Supporting group work (GROUP ’03), 2003.

10. S. Greenberg and M. Roseman. Using a room metaphor to ease transitions in
groupware. Tech. Report 98/611/02, Dep. Comp. Science, Univ. of Calgary, 1998.

11. Groove. Groove Workspace v. 2.5. http://www.groove.net.
12. C. Gutwin and S. Greenberg. Effects of awareness support on groupware usability.

In Proc. of the Conf. on Human factors in computing systems, 1998.

104 N. Preguiça et al.

13. J. Haake and B. Wilson. Supporting collaborative writing of hyperdocuments in
SEPIA. In Proc. of the ACM Conf. on Computer-supported cooperative work, 1992.

14. A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Proving correctness of trans-
formation functions in real-time groupware. In Proc. of the 8th European Conf. on
Computer-Supported Cooperative Work (ECSCW’03), Sept. 2003.

15. A. Karsenty and M. Beaudouin-Lafon. An algorithm for distributed groupware
applications. In Proc. of the 13th Int. Conf. on Dist. Computing Systems, 1993.

16. R. H. Katz. Toward a unified framework for version modeling in engineering
databases. ACM Comput. Surv., 22(4):375–409, 1990.

17. M. Koch. Design issues and model for a distributed multi-user editor. Computer
Supported Cooperative Work, 3(3-4):359–378, 1995.

18. Lotus. Ibm lotus notes. http://www.lotus.com/notes.
19. P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain. SAMS: Synchronous, Asyn-

chronous, Multi-Synchronous Environments. In Proc. of the 2002 ACM Conf. on
Computer supported cooperative work in design, 2002.

20. J. P. Munson and P. Dewan. Sync: A java framework for mobile collaborative
applications. IEEE Computer, 30(6):59–66, June 1997.

21. N. Preguiça, J. L. Martins, H. Domingos, and S. Duarte. Data management sup-
port for asynchronous groupware. In Proc. of the 2000 ACM Conf. on Computer
supported cooperative work, 2000.

22. N. Preguiça, J. L. Martins, H. Domingos, and S. Duarte. Integrating synchronous
ans asynchronous interactions in groupware applications. Technical Report TR-
01-2005 DI-FCT, Univ. Nova de Lisboa, 2005.

23. N. Preguiça, M. Shapiro, and C. Matheson. Semantic-based reconciliation for
collaboration in mobile environments. In Proc. of the 11th Conf. on Cooperative
Information Systems (CoopIS) - LNCS 2888. Springer, 2003.

24. C. Qu and W. Nejdl. Constructing a web-based asynchronous and synchronous
collaboration environment using webdav and lotus sametime. In Proc. of the 29th

ACM SIGUCCS Conf. on User services, 2001.
25. M. Roseman and S. Greenberg. Building real-time groupware with GroupKit,

a groupware toolkit. ACM Trans. on Computer-Human Interaction (TOCHI),
3(1):66–106, 1996.

26. C. Schuckmann, L. Kirchner, J. Schümmer, and J. M. Haake. Designing object-
oriented synchronous groupware with coast. In Proc. of the 1996 ACM Conference
on Computer supported cooperative work, 1996.

27. H. Shen and C. Sun. Flexible notification for collaborative systems. In Proc. of
the 2002 ACM Conf. on Computer supported cooperative work, 2002.

28. H. S. Shim, R. W. Hall, A. Prakash, and F. Jahanian. Providing flexible services
for managing shared state in collaborative systems. In Proc. of the 5th European
Conf. on Computer Supported Cooperative Work (ECSCW’97), 1997.

29. C. Sun and D. Chen. Consistency maintenance in real-time collaborative graphics
editing systems. ACM Trans. on Comp.-Human Interaction (TOCHI), 9(1), 2002.

30. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality
preservation, and intention preservation in real-time cooperative editing systems.
ACM Trans. on Comp.-Human Interaction (TOCHI), 5(1), 1998.

31. N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies convergence in a distributed
real-time collaborative environment. In Proc. of the 2000 ACM Conf. on Computer
supported cooperative work, 2000.

32. Y. Yang, C. Sun, Y. Zhang, and X. Jia. Real-time cooperative editing on the
internet. IEEE Internet Computing, 4(3):18–25, 2000.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 105 – 120, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Architectural Model for Component Groupware

Cléver R.G. de Farias1,2, Carlos E. Gonçalves2, Marta C. Rosatelli2,
Luís Ferreira Pires3, and Marten van Sinderen3

1 Departamento de Física e Matemática,
Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP/USP),

Av. Bandeirantes, 3900, 14040-901 − Ribeirão Preto (SP), Brazil
farias@ffclrp.usp.br

2 Programa de Mestrado em Informática, Universidade Católica de Santos,
Rua Dr. Carvalho de Mendonça, 144, 11070-906 − Santos (SP), Brazil

{cleverfarias, ceg-elus, rosatelli}@unisantos.edu.br
3 Centre for Telematics and Information Technology, University of Twente,

P.O. Box 217, 7500 AE, Enschede, The Netherlands
{pires, sinderen}@cs.utwente.nl

Abstract. This paper proposes an architectural model to facilitate the design of
component-based groupware systems. This architectural model has been de-
fined based on (1) three pre-defined component types, (2) a refinement strategy
that relies on these component types, (3) the identification of layers of collabo-
ration concerns, and (4) rules for the coupling and distribution of the compo-
nents that implement these concerns. Our architectural model is beneficial for
controlling the complexity of the development process, since it gives concrete
guidance on the concerns to be considered and decomposition disciplines to be
applied in each development step. The paper illustrates the application of this
architectural model with an example of an electronic voting system.

1 Introduction

The technological advances of the last decade have brought many changes into our
society. Computers have become essential working and entertainment tools. Yet, most
of the computer systems are targeted to single users, although most of our working
tasks are likely to involve a group of people. Systems that provide support for groups
of people engaged in a common task are called groupware systems.

The development of groupware systems poses many different challenges. Apart
from the social aspects of groupware, developers are faced with problems typical of
both distributed systems and cooperative work. Problems pertaining to distributed
systems are, amongst others, the need for adequate levels of transparency, reliability,
security, and heterogeneity support. Problems related to cooperative work are mainly
the need for flexibility, integration, and tailorability in groupware systems [5].

The use of component-based technologies contributes to solve these problems [2,
 8, 11, 19, 21, 22]. Component-based development aims at constructing software arte-
facts by assembling prefabricated, configurable and independently evolving building
blocks called components. A component is a binary piece of software, self-contained,
customisable and composable, with well-defined interfaces and dependencies.

106 C.R.G. de Farias et al.

Components are deployed on top of distributed platforms, contributing to solve
many of the distribution-related problems of groupware systems. Components can
also be configured, replaced and combined on-the-fly, which enhances the degree of
flexibility, integration and tailorability provided by a system.

One of the biggest challenges in system development is the definition of the system
architecture. The architecture of a (computing) system can be defined as the structure
(or structures) of the system in terms of software components, the externally visible
parts of those components and the relationships among them [3]. In this way, the
architecture can be seen as the top-level decomposition of a system into major com-
ponents, together with a characterisation of how these components interact [23].

A proper definition of the architecture of a system facilitates not only the system de-
sign as a whole but also the development and reuse of components for a family of similar
systems, the so-called product line development. Thus, our work proposes an architec-
tural model to help groupware developers tackling the design of component-based
groupware systems. Our architectural model defines different types of components that
serve as basis for system and component refinements. Our model also defines different
types of collaboration concerns to help the identification of the different types of com-
ponents and the assignment of functionality to components.

The remainder of this work is structured as follows: section 2 discusses the refine-
ment strategy adopted in this work; section 3 identifies component types to be applied in
the (component-based) development process of groupware systems; section 4 proposes
a set of consecutive layers, one for each specific collaboration aspect of a cooperative
work process; section 5 introduces the concept of collaboration coupling between these
layers and discusses some related distribution aspects; section 6 illustrates the applica-
tion of our architectural model with a case study related to an electronic voting system;
finally, section 7 presents some conclusions.

2 Refinement Strategy

In the design of a groupware system, we use of the concept of functional entity as an
abstraction for an entity in the real world (e.g., a system, a system user or a system
component) capable of executing behavior. A functional entity executes behavior by
itself or in cooperation with other functional entities, which form the environment of
this entity.

2.1 Refinement Principle

There are two main approaches to tackle the refinement of a functional entity in gen-
eral: (1) to refine the interactions between the functional entity and its environment
without changing the granularity of the functional entity itself, i.e., without decom-
posing the functional entity into smaller parts, or (2) to decompose the functional
entity into smaller parts and allocate the functional entity interactions to these parts
without changing these interactions, except for the introduction of new (internal)
interactions between the smaller parts. The first approach is called interaction refine-
ment, while the second one is called entity refinement [16].

 An Architectural Model for Component Groupware 107

Fig. 1 illustrates the difference between the interaction refinement and entity re-
finement in the refinement of a system into system parts. Fig. 1 also shows that these
approaches can be combined in successive refinement steps to produce some design,
in which both the system is decomposed into smaller parts and the interactions are
refined into more detailed interactions.

In the context of this work, we consider that a refinement process is carried out
only according to the entity refinement approach. Consequently, we assume that the
interactions between a functional entity and its environment are preserved as we re-
fine the system into a set of interrelated components. Therefore, unless explicitly
mentioned, we use the term refinement or decomposition to denote entity refinement.

Entity
refinement

System

I1

I3

I2

I2

I3

I1

Interaction
refinement

System

I1.1 I1.2 I2

I3.1 I3.2 I3.3

I2I1.1 I1.2

I3.1 I3.2 I3.3

Interaction
refinement

SP SP

SP SP

SPSP

Combined
refinement

Entity
refinement

Fig. 1. Alternative refinement approaches

2.2 Component Decomposition

We can identify two slightly different approaches regarding the decomposition of a
system into components: the continuous recursion approach [4] and the discrete re-
cursion approach [7].

In the continuous recursion approach, the system is continuously refined into finer-
grained components, until components of a desired granularity level or complexity are
identified. Since in this case no specific component types are defined beforehand, this
approach can only provide general guidelines for reducing the complexity of a component.

In the discrete recursion approach, the system is systematically refined into com-
ponents of different types, which are pre-defined according to, for examples, different
objectives or milestones identified throughout the design trajectory. A component
type defines a number of characteristics common to a number of components. Differ-
ent component types can be made to correspond to different component granularities,
although this is not always necessarily the case. This decomposition approach is ca-
pable of providing both general and more specific refinement guidelines for each
component type.

108 C.R.G. de Farias et al.

Fig. 2 illustrates the difference between the two approaches. Fig. 2a shows the con-
tinuous recursion refinement approach, in which all components defined in the con-
secutive decomposition steps are of the same type (‘grey’ components). Fig. 2b shows
the discrete recursion refinement approach, in which two component types are defined
beforehand (grey and white components). Furthermore, Fig. 2b shows a decomposi-
tion discipline in which only a single component type (either grey or white) is used at
a certain level of granularity.

System

(a) continuous recursion

System

(b) discrete recursion

Fig. 2. Alternative component decomposition approaches

Fig. 2 also shows that these approaches are not fundamentally different (it is all
about successive decomposition), and that discrete recursion could even be seen as a
specialisation of continuous recursion.

3 Component Types

In this work we use the discrete recursion approach for component decomposition,
because this approach allows us to tailor the component types according to different
(sets of) concerns. Thus, we identify three different types of components inspired by
[7]: basic components, groupware components, and application components.

A basic component is the most basic unit of design, implementation, and deploy-
ment. A basic component is not further refined into other components. Additionally,
the behaviour of a basic component is carried out by binary code. Therefore, an in-
stance of a basic component runs on a single machine, which is usually part of a dis-
tributed environment.

A groupware component consists of a set of basic components that cooperate in order
to provide a mostly self-contained set of groupware functions. A groupware component
embodies the behaviour corresponding to an independent collaborative concept or feature
that can be reused to build larger groupware components and systems.

 An Architectural Model for Component Groupware 109

The self-containment of a groupware component does not imply that this compo-
nent is isolated from other components. On the contrary, a groupware component
should be composable, i.e., one should be able to compose different groupware com-
ponents, and these components should be able to interact with each other. However,
such a component should have minimal dependencies in order to maximize its reuse.

A groupware component also encapsulates distribution aspects. Since a groupware
component consists internally of basic components, and basic components can be
distributed individually across a network, the distribution aspects normally required
by a groupware component are consequently addressed by the composition of (dis-
tributed) basic components. However, basic components can be used to address not
only the physical distribution aspects, but also the distribution of concerns and re-
sponsibilities that form a groupware component.

An application component corresponds to a groupware application, i.e., an inde-
pendent application that can be used separately or integrated into another groupware
system. Any groupware system under development can be considered an example of
an application component. However, groupware components can also be used as
building blocks for larger application components. In most cases, an application com-
ponent consists of a set of interrelated groupware components that cooperate in order
to provide some application-level functionality.

In order to illustrate this component hierarchy, we take a videoconferencing system
as an example. This system can be seen as a composition of individual applications,
such as videoconferencing, chat, and shared whiteboard applications. A videoconfer-
encing application can be decomposed into separate groupware components, which
provide, e.g., audio support, video support, and attendance support. An audio support
component can be decomposed into separate basic components to handle the connec-
tion establishment, coding, decoding, transmission, and so on.

Nevertheless, this classification scheme is flexible and subject to the designer’s
choice and interpretation. For example, in the videoconferencing system above, one
could alternatively assign a separate groupware component to handle each of the
videoconferencing, chat, and shared whiteboard concerns. In this alternative, the sys-
tem is seen as a composition of individual groupware components, instead of a com-
position of application components.

4 Collaboration Concerns

In order to structure groupware systems we have identified layers of collaboration
concerns that have to be handled by these systems. We have also identified rules for
configuring these layers so that a meaningful groupware system can be obtained.

4.1 Collaboration Concern Layers

Suppose a particular groupware component manages the editing of a shared docu-
ment. This component is responsible for maintaining the consistency of the document,
allowing multiple users to change the document simultaneously. Initially, a user may
choose to have a different view of the document. For example, a user may choose an
“outline” view, as opposed to another user who uses a “normal” view at the same

110 C.R.G. de Farias et al.

time. The question is whether this particular choice of the first user should affect the
way in which the second user views the document or the component should allow
different users to have different views of the document simultaneously.

Consider that this particular component is also responsible for keeping the users in-
formed about changes in the document. Another question is whether a user should be
notified of every change in the document or any action of another user, or the compo-
nent should only notify the user when a change affects the part of the document this
specific user is currently working on.

These are typical issues that have to be dealt with by a groupware component. In
order to provide flexibility to deal with these and other issues, we identify a number
of so-called collaboration concern layers, on which different aspects of the function-
ality of a groupware component can be positioned.

We have identified four separate layers: interface, user, collaboration, and re-
source. Each layer uses the functionality provided by the layer below in order to pro-
vide some functionality that is used by the layer above. Fig. 3 depicts the collabora-
tion concern layers identified in this work and their relationships.

User Collaboration Resource Interface

Fig. 3. Collaboration concern layers

The interface layer is concerned with providing a suitable interface between a hu-
man user and the groupware component. Considering a drawing component of a
shared whiteboard application, the interface layer should enable a user to create new
drawings and change or delete existing drawings by means of graphical commands.
The interface layer should also enable the user to visualize the drawing itself through
the interpretation of drawing commands. Therefore, the interface layer handles all the
direct communication with the users via a graphical user interface.

The user layer is concerned with the local support for the activities performed by a
single user. The user layer addresses the local issues with respect to each individual
user that do not affect the collaboration as a whole. For example, suppose that our
drawing component enables a user to make changes to a local copy of a shared draw-
ing, without changing the shared drawing immediately. This allows the user to incor-
porate changes to the shared drawing only when this user is absolutely satisfied with
these changes. Therefore, the user layer maintains a user’s perception of the collabo-
ration. The user layer also supports the interface layer, by relating it with the collabo-
ration layer.

The collaboration layer is concerned with collaboration issues of multiple users.
The logic involved in different collaboration aspects, such as communication, coordi-
nation and cooperation functionalities [6, 9], are mainly tackled at this layer. Consid-
ering our drawing component, the collaboration layer should be able to handle the
drawing contributions of multiple users, relating them as necessary. Therefore, this
layer is responsible for the implementation of the core aspects of the collaboration and
for relating the user layer to the resource layer.

 An Architectural Model for Component Groupware 111

The resource layer is concerned with the access to shared collaboration information
(resources), which could be, for example, kept persistently in a database. In our draw-
ing component, the resource layer should be able to store the drawing and drawing
commands, saving and loading them as necessary. The resource layer is only accessi-
ble through the collaboration layer.

4.2 Implementation of Concern Layers

Each collaboration concern layer can be implemented by one or more basic compo-
nents. An interface component implements the interface collaboration layer. Simi-
larly, user, collaboration, and resource components implement the user, the collabora-
tion, and the resource collaboration layers, respectively. Nevertheless, it is not un-
common to someone implement more than one layer using a single component, in
case the functionality provided by these layers is simple enough to be implemented by
a single component.

We distinguish between three different types of functionality interfaces that a com-
ponent can support based on the purpose and visibility (scope) of the interface:
graphical user interfaces, internal interfaces and external interfaces.

A graphical user interface (GUI) supports the interactions between a human user
and an interface component. An internal interface supports the interactions between
the components of a single groupware component. Such an interface has internal
visibility with respect to a groupware component, i.e., a groupware component cannot
interact with another groupware component using internal interfaces. An external
interface supports the interactions between groupware components. Such an interface
has external visibility with respect to groupware components.

Interface components and resource components usually do not have external inter-
faces. Therefore, interactions between groupware components are normally only
achieved via the user and collaboration components.

A groupware component does not need to have all four layers. For example, it is
only meaningful to have a resource layer if some shared information has to be stored
persistently. Similarly, an interface layer is only meaningful if the component inter-
acts with a human user.

Nevertheless, if a groupware component has more than one layer, these layers
should be strictly hierarchically related. For example, the interface layer should not
access the collaboration layer or the resource layer directly, nor should the user layer
access the resource layer directly. Thus, a single groupware component should consist
of at least one and up to four ordered collaboration concern layers.

Fig. 4 illustrates some examples of groupware components that conform to the
rules given above. Each layer is represented by a corresponding basic component. A
groupware component is represented by a dashed rectangle, while a basic component
is represented as a solid rectangle. An interface is represented by a T-bar attached to a
component, while an operation invocation is represented by an arrow leading to an
interface. An external interface is represented by a solid T-bar that crosses the bound-
ary of the groupware component, while an internal interface is represented by a
dashed T-bar inside the groupware component. Graphical interfaces are not explicitly
represented.

112 C.R.G. de Farias et al.

User
Component

Collaboration
Component

Interface
Component

User
Component

Collaboration
Component

Resource
Component

User
Component

Collaboration
Component

Fig. 4. Valid layering distributions

4.3 Related Work

Our collaboration concern layers have been identified based on a number of develop-
ments, such as Patterson’s state levels [15], Herzum and Sims’ distribution tiers [7]
and Wilson’s architectural layers [24]. These developments address similar issues
although with different terminology.

Patterson [15] identifies four state levels in which a synchronous groupware appli-
cation can be structured, namely display, view, model, and file. The display state
contains the information that drives the user display. The view state contains the in-
formation that relates the user display to the underlying information in the application,
which is the model state. The file state consists of a persistent representation of the
application information. Based on Patterson’s state levels, Ter Hofte proposes a four-
level collaborative architecture known as the zipper architecture [22].

Herzum and Sims [7] propose a distribution architecture for business components
that consists of four tiers, namely user, workspace, enterprise, and resource. These
tiers are roughly equivalent to our collaboration concern layers. However, this archi-
tecture emphasizes distribution aspects, instead of the collaboration aspects that we
emphasize in our work.

Table 1. Collaboration concern layers and related approaches

Collaboration
Concern Layers

Patterson’s
State Levels

Herzum and Sims’
Distribution Tiers

Wilson’s
Architectural Layers

Interface Display User View

User View Workspace Application-Model

Collaboration Model Enterprise Domain

Resource File Resource Persistence

 An Architectural Model for Component Groupware 113

Wilson [24] proposes the development of a distributed application according to
four architectural layers, namely view, application-model, domain and persis-
tence. The view layer deals with user interface issues, the application-model layer
deals with application-specific logic, the domain layer deals with domain-specific
logic, and the persistence layer deals with the storage of information in a persis-
tent format.

Table 1 shows the correspondence between our collaboration concern layers, Pat-
terson’s state levels, Herzum and Sims distribution tiers, and Wilson’s architectural
layers.

5 Collaboration Coupling

The coupling of collaboration concerns and their logical or physical distribution are
two important aspects to be considered in the design of groupware systems.

5.1 Coupling Levels

So far we have discussed the collaboration concern layers of a groupware component
in the context of a single user. However, the whole purpose of groupware systems is
to support interactions involving multiple users.

In the context of a groupware system, and particularly in the context of a group-
ware component, two or more users may or may not share the same perception of the
ongoing collaboration supported by the system. For example, in the case of the
groupware component that manages the editing of a shared document, if one user
chooses an outline view of the document instead of a normal view, this decision could
possibly affect another user’s view of the document. In case all the component users
share the same perception, the outline view would replace the normal view for all
users. Otherwise, the other users do not share the same perception of the collabora-
tion, and only that particular user would have an outline view of the document.

We can apply the same reasoning to each collaboration concern layer of a group-
ware component. As a consequence, collaboration concern layers can be coupled or
uncoupled. Coupling was introduced as a general mechanism for uniting the interac-
tion contributions of different users, such that users might share the same view or
state of a collaboration [22].

A collaboration concern layer of a groupware component is coupled if all users
have the same perception of the information present in the layer and how this infor-
mation changes. Therefore, a collaboration concern layer across multiple users can be
coupled or uncoupled. An important property of coupling is downwards transitivity,
which means that if a layer is coupled, the layers below, from the interface layer down
to the resource layer, must be coupled as well in order to ensure consistency.

Four levels of coupling can be established based on the collaboration layers de-
fined in this work: interface, user, collaboration, and resource coupling.

The interface coupling level represents the tightest coupling level. All the compo-
nent users have the same perception of the collaboration, starting at the user interface
layer. This level corresponds to the collaboration style known as What You See Is
What I See (WYSIWIS) [20].

114 C.R.G. de Farias et al.

The user coupling level offers more freedom (independence of use) to the compo-
nent user than the interface coupling level. All the component users have the same
perception of the collaboration starting at the user layer, i.e., the information at the
user layer is shared by all users, but their interface layers are kept separate.

The collaboration coupling level goes a step further and offers more freedom than
the user coupling level. All the component users have the same perception of the
collaboration starting at the collaboration layer, i.e., the information at the collabora-
tion layer is shared by all users, but their interface and user layers are kept separate.

The resource coupling level offers the loosest coupling level. All component users
have the same perception of the collaboration only at the resource layer, i.e., the in-
formation at the resource layer is shared by all users, but their interface, user and
collaboration layers are kept separate.

Fig. 5 depicts the collaboration coupling levels defined in this work for two users.
A large rectangle labelled with the layer initial indicates that the layer it represents is
coupled, while a small rectangle also labelled with the layer initial indicates that the
layer it represents is uncoupled.

I

U

C

R

U

I I

C

R

C C

R R

U U

I I

U U

I I

C

R R

C C

U U

I I

(a) (b) (c) (d) (e)

Fig. 5. Collaboration coupling levels

Fig. 5a to Fig. 5d show the interface, user, collaboration and resource coupling lev-
els, respectively. Fig. 5e depicts the absence of coupling at all levels, i.e., in this fig-
ure the two instances of the groupware component operate independently from each
other (offline collaboration).

In a truly flexible groupware system, the users of this system should be able to choose
between the different levels of coupling, changing it at run-time based on the characteris-
tics and requirements of the task at hand. They should also be able to choose a temporary
absence of coupling, i.e., the users may decide to work independently for a while,

 An Architectural Model for Component Groupware 115

resuming their coupling status sometime later. In this case, additional mechanisms to
guarantee the consistency of the collaboration afterwards have to be implemented.

5.2 Distribution Issues

There are basically two ways to achieve collaboration coupling in a given layer: using
a centralised architecture or using a replicated architecture with synchronization
mechanisms.

In a centralized architecture, a single copy of the collaboration state, i.e., all the in-
formation contained in a layer, is maintained and shared by the users of the layer.
Concurrency control mechanisms should be used to avoid inconsistencies if needed.

In a replicated architecture, multiple copies of the collaboration state are main-
tained, one for each user of the layer. In this case, synchronization mechanisms (pro-
tocols) are used to maintain the consistency across the replicated copies of the col-
laboration.

The collaboration state of an uncoupled layer is non-centralised by definition, i.e.,
each user maintain its own copy of the collaboration state. However, the collaboration
state of a given coupled layer can be either centralised or replicated. Thus, different
architectures for each coupling level can be applied in a single groupware system.

The resource layer can only be coupled otherwise we are actually talking about dis-
tinct instances of a collaboration in place of a single one (see example in Fig. 5e).
This implies that the resource coupling level can only be centralised or replicated.
Each layer above can be coupled or uncoupled; in case the layer is coupled, the cou-
pling level can be again centralised or replicated. A fully centralised architecture has
only centralised layers, a fully replicated architecture has only replicated layers, and a
hybrid architecture combines centralised and replicated layers. However, once a cou-
pled layer is implemented using a centralised architecture, all layers below should
also be implemented using a centralised architecture. This is because it makes little
sense to centralise some information in order to assure consistency, and then to repli-
cate some other information upon which the first one depends on.

Although possible in principle, it is very unlikely that interface coupling is
achieved using a centralized architecture because of the complexity involved and
response time requirements. Interface coupling is usually implemented based on
shared window systems (see [1, 10, 20]).

Fig. 6 illustrates three possible combinations of centralised and replicated archi-
tectures to achieve coupling at the collaboration layer for two users. In Fig. 6 a
rectangle represents an instance of a basic component, which is labelled with the
initial of the layer it implements. A large rectangle indicates a component in a cen-
tralized architecture, while two small rectangles connected by a synchronization bar
(a double-edged horizontal arrow) indicate a component in a replicated architecture.
Small rectangles without a synchronization bar indicates that the layer they repre-
sent are uncoupled. Fig. 6a depicts a fully centralised architecture (both the resource
and the collaboration layers are centralised), Fig. 6b depicts a hybrid architecture
(the resource layer is centralised while the coordination layer is replicated), and Fig.
6c depicts a fully replicated architecture (both the resource and the collaboration
layers are replicated).

116 C.R.G. de Farias et al.

(a) (b) (c)

UC UC

IC IC

CC

RC

IC IC

RC

UC UC

IC IC

UC UC

CC CC CC CC

RC RC

Fig. 6. Centralised, hybrid, and replicated architectures

The choice between a centralised architecture and a replicated architecture is
mainly related to implementation issues [22]. A centralised architecture is indicated
whenever a given coupling level either requires some specialised or excessive proc-
essing power that prevents replication or changes from a coupled state to an uncou-
pled state at this level are unlikely. A replicated architecture is indicated whenever
changes from a coupled state to an uncoupled state are desired, thus improving the
flexibility of the component.

A discussion on the benefits and drawbacks of centralised versus replicated archi-
tectures, as well as the mechanisms used to achieve consistency in both architectures,
falls outside the scope of this work. For detailed discussions on these issues we refer
to [1, 10, 14, 17, 18, 22].

6 Design of an Electronic Voting System

In order to exemplify our architectural model we have applied it in the development
an Electronic Voting System (EVS).

The EVS basically enables its users to create polls and/or vote on them. To use the
EVS, any user is required to register first. Registered users can then log in and out of
the system and update their personal profile. Any registered user can open a poll,
defining its subject, voting options and eligible participants. Once a poll is registered,
it will be available for voting to all selected participants. A registered user can visual-
ize a list of all the polls available in the system and cast a single vote to any open poll
in which she participates. Additionally, the results of a closed poll should be available
for consultation by all users.

The design of the EVS system was carried out in a number of design steps accord-
ing to the guidelines provided in [5]. In this work, we used UML 2.0 [12, 13] as our
modelling language. Fig. 7 depicts the high level architectural model of the EVS us-
ing UML component diagram.

 An Architectural Model for Component Groupware 117

Fig. 7. EVS high level architecture

In the first step the EVS service was specified. At this point the EVS was seen as
an application component, called Voting System. In the second step, this component
was decomposed into two groupware components:

• Account Manager, which is responsible for the registration of users, their logging
on and off the system, and provision of user awareness;

• Poll Manager, which is responsible for the control over the creation of polls, as
well as the cast of votes;

In the third step, each groupware component was then refined into a number of
simple components. In this case study we did not consider the interface layer as part
of the groupware component, but considered it as part of the client application.

The Account Manager component was refined into the basic components Account,
UserLog and UserData, which implement the user, collaboration and resource layers
respectively. The identified components are coupled at the collaboration coupling
level, using a fully centralised architecture for the coupled layers. Since the user layer
is uncoupled, a separate instance of the component Account should be created to sup-
port each separate user of this component.

The Poll Manager component was refined into the basic components Voting, Partici-
pantData, PollData, OptionData and VoteData. The component Voting implements the user
and collaboration layers, while the remaining components implement the resource
layer. The identified components are coupled at the resource coupling level, using a
fully centralised architecture for this layer. Since the user/collaboration layer is un-
coupled, a separate instance of the component Voting should be created to support each
separate user of this component.

118 C.R.G. de Farias et al.

The EVS components were implemented as Enterprise Java Beans (EJB) compo-
nents. As an implementation infrastructure, we used the JBOSS 3.2 application server,
the Hypersonic database, and JAAS for authentication. The client was developed
using SWING and a communication library of the JBOSS server.

The components Account and Voting were implemented as two stateless session
beans, while the component UserLog was implemented as a statefull session bean. The
remaining components were implemented entity beans, using bean managed Persis-
tence. Notification across components was implemented using the Java Message Ser-
vice (JMS).

Fig. 8 depicts some screenshots of the voting system user interface. Fig. 8a shows
the system main interface. This interface shows the list of current logged users. Fig.
8b shows the poll registration interface. Fig. 8c shows the poll voting interface. Fig.
8d shows the poll results interface.

Fig. 8. Voting system user interface

7 Conclusion

This paper proposes an architectural model for the development of component-based
groupware systems. According to this model, a groupware system is recursively decom-
posed into a number of interrelated components, such that the service provided by the
groupware system is provided by the composed individual services of these components.

The decomposition process is carried out according to a discrete recursion approach
based on pre-defined component types. We believe that the use of specific component
types facilitates the decomposition process if compared to a decomposition approach

 An Architectural Model for Component Groupware 119

that does not make such distinction. Additionally, the use of pre-defined component
types facilitates the identification and reuse of existing components.

We have discussed the use of collaboration concern layers and collaboration coupling
to structure the different collaboration aspects within the scope of a groupware compo-
nent. We believe that the use of these layers and guidelines facilitates the logical and
physical distribution of these aspects and the assignment of functionality to components
thereafter thus improving reuse and speeding up the development process.

We have illustrated the application of the architectural model proposed in this work
by means of a simple case study describing the development of an electronic voting
system, which is being developed in the scope of the project TIDIA-Ae1.

Acknowledgements

This work has been partially supported by FAPESP under project number
2003/08279-2.

References

1. Ahuja, S.R., Ensor, J.R. and Lucco, S.E.: A comparison of application sharing mecha-
nisms in real-time desktop conferencing systems. In Proceedings of the 1990 ACM Con-
ference on Office Information Systems (COIS’90), pp. 238-248, 1990.

2. Banavar, G., Doddapaneti, S., Miller, K. and Mukherjee, B.: Rapidly Building Synchro-
nous Collaborative Applications by Direct Manipulation. In Proceedings of the 1998 ACM
Conference on Computer Supported Cooperative Work (CSCW’98), pp. 139-148, 1998.

3. Bass, L., Clements, P. and Kazman, R.: Software Architecture in Practice. Addison-
Wesley, 1997.

4. D’Souza, D. F. and Wills, A. C.: Objects, Components and Frameworks with UML: the
Catalysis Approach. Addison Wesley, 1999.

5. de Farias, C. R. G.: Architectural Design of Groupware Systems: a Component-Based Ap-
proach. PhD Thesis, University of Twente, the Netherlands, 2002.

6. Fuks, H., Raposo, A. B., Gerosa, M. A. and Lucena, C. J. P.: Applying the 3C Model to
Groupware Development. In International Journal of Cooperative Information Systems
(IJCIS), 14(2-3), pp. 299-328, 2005.

7. Herzum, P. and Sims, O.: Business component factory: a comprehensive overview of com-
ponent-based development for the enterprise. John Wiley & Sons, 2000.

8. Hummes, J. and Merialdo, B.: Design of Extensible Component-Based Groupware. In
Computer Supported Cooperative Work: The Journal of Collaborative Computing, 9 (1),
pp. 53-74, 2000.

9. Laurillau, Y. and Nigay, L.: Clover Architecture for Groupware. In Proceedings of the
2002 ACM Conference on Computer Supported Cooperative Work (CSCW´02), pp. 236-
246, 2002.

10. Lauwers, J.C., Joseph, T.A., Lantz, K.A. and Romanow, A.L.: Replicated architectures for
shared window systems: a critique. In Proceedings of the 1990 ACM Conference on Office
Information Systems (COIS’90), pp. 249-260, 1990.

1 http://tidia-ae.incubadora.fapesp.br/novo/

120 C.R.G. de Farias et al.

11. Litiu, R. and Prakash, A.: Developing adaptive groupware applications using a mobile
component framework. In Proceedings of the ACM 2000 Conference on Computer Sup-
ported Cooperative Work (CSCW'00), pp. 107-116, 2000.

12. OMG: UML 2.0 Infrastructure Specification. Adopted Specification, Object Management
Group, 2003.

13. OMG: UML 2.0 Superstructure Specification. Revised Final Adopted Specification, Ob-
ject Management Group, 2004.

14. Patterson, J.F., Day, M. and Kucan, J.: Notification servers for synchronous groupware. In
Proceedings of ACM 1996 Conference on Computer Supported Cooperative Work
(CSCW'96), pp. 122-129, 1996.

15. Patterson, J.F.: A taxonomy of architectures for synchronous groupware applications.
SIGOIS Bulletin, 15 (3), pp. 27-29, 1995.

16. Quartel, D., Ferreira Pires, L. and Sinderen, M.: On Architectural Support for Behaviour
Refinement in Distributed Systems Design. In Journal of Integrated Design and Process
Science, 6 (1), pp. 1-30, 2002.

17. Roth, J. and Unger, C.: An extensible classification model for distribution architectures of
synchronous groupware. In Designing Cooperative Systems: the Use of Theories and Mod-
els, Proceedings of the 5th International Conference on the Design of Cooperative Systems
(COOP’00), pp. 113-127, 2000.

18. Schuckmann, C., Kirchner, L., Schümmer, J. and Haake, J.M.: Designing object-oriented
synchronous groupware with COAST, In Proceedings of ACM 1996 Conference on Com-
puter Supported Cooperative Work (CSCW'96), pp. 30-38, 1996.

19. Slagter, R. J.: Dynamic Groupware Services: Modular design of tailorable groupware.
PhD Thesis, University of Twente, the Netherlands, 2004.

20. Stefik, M., Bobrow, D.G., Foster, G., Lanning, S. and Tatar, D.: WYSIWIS revised: early
experiences with multiuser interfaces. ACM Transactions on Office Information Systems,
5(2), pp. 147-167, 1987.

21. Teege, G.: Users as Composers: Parts and Features as a Basis for Tailorability in CSCW
Systems. In Computer Supported Cooperative Work: The Journal of Collaborative Com-
puting, 9 (1), pp. 101-122, 2000.

22. ter Hofte, G. H.: Working Apart Together: Foundations for component groupware. PhD
Thesis, Telematics Institute, the Netherlands, 1998.

23. van Vliet, H.: Software Engineering: Principles and Practice. John Wiley & Sons, USA,
2000.

24. Wilson, C.: Application Architectures with Enterprise JavaBeans. Component Strategies,
2(2), pp. 25-34, 1999.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 121 – 136, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Architecture for Collaborative Geomodeling

Luciano P. Reis1,2, Alberto B. Raposo3, Jean-Claude Paul4,
and Fabien Bosquet5

1 Petrobras Research Center, Brazil
2 Institut National Polytechnique de Lorraine, France

luciano.reis@petrobras.com.br
3 Tecgraf, Computer Science Dept., PUC-Rio, Brazil

abraposo@tecgraf.puc-rio.br
4 ISA / LORIA, France

Jean-Claude.Paul@loria.fr
5 Earth Decisions Sciences, France

bosquet@earthdecision.com

Abstract. This paper presents an architecture for distributed synchronous col-
laborative visualization and modeling applied to the geosciences. Our goal is to
facilitate the creation of heterogeneous collaboration sessions, in which partici-
pants may use different versions of a core CAD application, configured with
specific functionalities and multimedia user interfaces, through the composition
of run-time plugins. We describe the domain requirements, the architectural
concepts that facilitate the integration of our collaboration plugins with the core
application, and the management of communication channels to allow the defi-
nition of role-based control policies adapted to specific types of sessions.

1 Introduction

Geomodeling, the computer-aided design of geological objects and their properties
[17], involves a large spectrum of skills spread over different domains: geophysics,
geology and reservoir engineering. A numerical earth model is shared by people with
different types of specializations and evolves continuously through a team effort. In
the oil and gas industry, during the exploration and production of a reservoir, new
data is constantly acquired, and the model needs to be frequently updated as new
decisions have to be taken based on the most up-to-date information.

Effective geomodeling is strongly graphics-based. High-performance graphics
make it possible for the professionals involved in the process to interactively visualize
and edit the integrated three-dimensional models. Visualization is used as a powerful
tool for data understanding and insight, as a support for interactive modeling, and as a
common language for communication and collaboration within multi-disciplinary
teams. Currently, virtual-reality applications are starting to be used to enhance com-
prehension and to improve precision in some modeling tasks [11, 14].

Given the geographical dispersion of operations and professionals in the industry,
and the increasing availability of computing, graphics and networking resources,
remote collaboration offers great potential to improve distributed cooperation and

122 L.P. Reis et al.

decision-making. The scarcity of geomodeling experts also makes this technology
very important for consulting and training. However, currently only a few commercial
modeling applications are starting to offer some collaboration functionalities, mainly
the synchronization of points-of-view among remote users .

A key problem faced by the companies is how to integrate different types of tools,
legacy and new, to compose a comprehensive software solution that provides a coher-
ent and efficient environment for remote collaboration.

Therefore, the objective of this work is the development of an architecture for re-
mote synchronous collaborative modeling and visualization applied to oil and gas
exploration and production. This application domain is closely related to other areas,
like collaborative engineering and collaborative scientific visualization. However,
some specific requirements influence the design of the proposed architecture. In
particular we are interested in facilitating the coordinated use of heterogeneous user
interfaces and interaction paradigms by participants in multi-disciplinary collabora-
tive sessions with the support of multimedia communication, taking into account the
different types of collaborative activities to be performed, the roles of the participants
and the communication and cooperation channels involved.

Unlike related collaboration solutions [1, 19, 25], we do not expect the develop-
ment of tools compliant to a predefined architecture. Instead, our purpose is to facili-
tate the transformation of a well-designed operational application, which follows
established design principles [9] and is extensible by run-time plugins, into a collabo-
rative system through the introduction of cooperation and communication mecha-
nisms. Our implementation is based on Gocad [10], a pioneering geological modeling
application.

Along with the core application and its functional plugins, the proposed collabora-
tion solution involves the development and integration of:

 A collaboration plugin responsible for providing session management services
and for supporting synchronous collaboration through the creation of “communi-
cation channels” (commands, camera, telepointers, 3D annotations, avatars,
model distribution, audio and video) among distributed instances of the applica-
tion, with broadcasting and floor control mechanisms;

 A custom tool for multimedia communication, also integrated as a plugin, provid-
ing audio and video channels subject to the defined control policies;

 A virtual-reality plugin compatible with the collaboration functionality provided;
 A real-time data-acquisition plugin, used for automatic integration into the model

of data arriving from remote well-drilling sites [2].

In this article, after an overview of some application scenarios, we emphasize the
description of the coordination mechanisms proposed for dealing with the different
channels used for cooperation and communication.

2 Collaborative Geomodeling

Before we proceed to the description of the proposed architecture, let us discuss some
typical application scenarios and related requirements.

 An Architecture for Collaborative Geomodeling 123

2.1 Collaboration Scenarios

Consulting
User A is building a model, and faces a problem on how to perform a certain task. A
then creates a collaboration session (a conference), invites user B to join from a re-
mote site, transfers the model and explains the problem, turning the model around,
zooming in the area where the problem occurs, pointing to things and making annota-
tions that B can see in a synchronized way, as if both were looking at the same dis-
play. B may also manipulate the camera and make annotations directly on the three-
dimensional model, which are seen by A (Figure 1). For the two participants only,
conversation could take place over the phone. However, integrated videoconferenc-
ing, automatically established among the participants of a conference, simplifies and
improves the communication.

Fig. 1. Screenshots of two users discussing a model, using 3D cursors and annotations (differ-
entiated by colors)

Conflicting camera movements are detected immediately, and a direct negotiation
for the control can be done during the discussion over the audio channel, without the
need for explicit passing of the camera control. However, if more than two partici-
pants are involved, negotiation of control through a verbal protocol becomes awk-
ward, interfering with the main discussion, and a turn-taking mechanism becomes
necessary. If both participants need to edit the model, floor passing is also used to
regulate the transfer of the control of modeling commands, avoiding possible incon-
sistencies due to conflicting operations.

Well Planning
An important collaboration scenario is the design and real-time steering of oil wells.
While a directional (non-vertical) well is drilled, data acquired at the well bit in the
subsurface needs to be received at the office from the remote drilling location and

124 L.P. Reis et al.

incorporated into the model, shared by local and remote geoscientists, in nearly real
time to support collaborative decisions about the steering of the well trajectory.

This activity involves at least two sites: one or more modeling experts working to-
gether at the office, using a desktop version of the application loaded with a well-
planning plugin with specific functionalities, and an operator at the drilling site, typi-
cally using a less powerful computer and a lightweight version of the application to
visualize the shared model, with restricted editing rights. All participants use the
plugin for real-time data acquisition. Usually very limited network bandwidth is avail-
able at the drilling site, requiring strict control of the use of audio and video. Our
system has been frequently applied to this scenario for the survey of actual operations.

Virtual-reality (VR) applications are now starting to be used for the design and
steering of complex horizontal wells [14, 13]. However, while some modeling tasks
like the design of the well path or a local modification of a surface may be facilitated
by the immersive interface, other global modeling tasks become more difficult with
an “inside the model” point of view. Also, the immersive interface usually needs to
provide restricted functionalities, for ergonomic reasons. We propose that the use of
VR as part of heterogeneous collaboration sessions can bring in the benefits but avoid
the shortcomings. In this case, a participant in the session uses the VR plugin in an
immersive virtual environment, collaborating with other desktop participants. Among
other usability issues, camera position events cannot be exchanged between the desk-
top and the VR users, since their navigation metaphors are totally different.

2.2 Requirements and Consequences

We have observed and taken part in operational collaboration sessions in the scenar-
ios described above. These ethnographic observations have suggested some specific
requirements for the proposed architecture, both from the users’ and from the system
developers’ points of view, which guided our design choices described below.

Small groups: the activities considered involve a small number of participants.
Therefore, scalability is not an issue in this domain. This allows the adoption of a
centralized coordination scheme, simplifying the solution.

Graphic performance: visualization and modeling require very responsive interac-
tion (maintenance of high frame rates), demanding an appropriate treatment of the
graphics-related communication channels. This implies that the implementation of
coordination policies cannot degrade performance. For this reason, for graphic inter-
action events, we propose a floor control mechanism based on the setting of input and
output switches for each channel in the host application, thus avoiding the processing
of the real-time events by the external coordination logic.

Integrated multimedia communication: audio and video are fundamental components
of a synchronous collaborative modeling system. In some systems this is provided
through external tools, requiring separate session management and controls. We con-
sider that audio and video need to be provided as integrated communication channels.
As the use of multiple audio and video streams poses strong requirements over band-
width and processing consumption, conference participants need to be able to control
individual connections, subject to the role-based policies defined for the conference.

 An Architecture for Collaborative Geomodeling 125

Reuse of single-user functionality: application deployment is one of the most chal-
lenging aspects of groupware development [7]. Our target applications require the
integration of a very large set of tools and multidisciplinary modeling functionalities,
typically developed over many years. Therefore, the objective of the architecture
proposed is to allow the flexible extension of an operational single-user application
into a collaborative system through the incorporation of plugins, not requiring recom-
pilation and redistribution.

Concurrency control: geological modeling involves the construction of diverse types
of mathematical objects (surfaces, meshes, solid models), with complex geometry and
topology, interdependency relationships, and a very large number of elements (a sin-
gle version of some objects may easily approach the available memory size). Cur-
rently it is not possible to assume that modeling operations may be always rolled back
efficiently. In this context, effective consistency maintenance guaranteeing high re-
sponsiveness and concurrency is still not feasible [23].

Therefore, the approach presently adopted for concurrency management in model-
ing is to actually avoid conflict through the use of mutual exclusion by the floor-
control setting for the modeling commands (or, optionally, to rely on a social proto-
col). As the mechanism proposed is extensible, more sophisticated floor strategies [5,
6] and concurrency control [23, 8, 21] can be used in the future.

Awareness: for effective collaboration, group awareness needs to be provided by
different means [21]. The list of participants in a session, their roles and control rights
over the different communication channels need to be easily accessible. Annotations,
telepointers and avatars need to be associated to the participants with visual cues, like
labels and colors.

Heterogeneous operation conditions: networking resources for distributed partici-
pants are typically very heterogeneous. To guarantee the required responsiveness we
have opted for a replicated architecture [4], in which the basic cooperation mechanism
is the broadcasting of commands and interaction events over the communication
channels, requiring low network bandwidth.

3 Collaboration Architecture

The proposed architecture was designed in the context of the scenarios and re-
quirements described above. A collaboration plugin (NetGocad), loaded at runtime,
allows the transformation of the single-user application (Gocad) into a distributed
collaborative system through its extension with broadcasting and control capabili-
ties, by means of the incorporation of CORBA objects and of a configurable coor-
dination component.

The separation of coordination policies from computation, as proposed elsewhere
[15, 3], and the definition of collaboration types, participant roles and floor control
over the channels through an object-oriented scheme, implemented with a simple and
powerful interpreted extension language (Lua), greatly simplifies the evolution of the
system.

126 L.P. Reis et al.

3.1 Gocad

Gocad (Geological Objects Computer Aided Design) is a CAD software, originally
developed by an international research consortium [10], that allows the construction
of earth models for geophysics, geology and reservoir engineering applications. Its
architecture is based on the systematic use of Design Patterns [9] such as: Abstract
Factory, Builder, Chain of Responsibility, Command, Composite, Factory Method,
Interpreter, Iterator, Observer, Proxy, and Singleton. It also provides a flexible devel-
opment framework to allow the creation of plugins, which can be dynamically loaded
at runtime inside the application shell.

The implementation of NetGocad, described in the next section, is therefore facili-
tated by this framework, in particular by the use of the Command, Abstract Factory
and Observer Patterns.

Gocad uses the Command Pattern to isolate the processing of operations from their
invocation at the user interface. All menu operations generate string commands that
are then executed, facilitating the creation of a mechanism to broadcast them to re-
mote servers. The use of Abstract Factories and Observers allows the run-time redefi-
nition of classes of the main application by the plugin. This mechanism is used to
create new observers for broadcasting commands and graphic events.

3.2 NetGocad

Figure 2 shows a simplified diagram with NetGocad’s main classes, responsible for
the collaboration functionality. Most of them are implemented in CORBA, chosen as
the distribution middleware because it is language-independent and multiplatform,
and facilitates the integration with interoperability solutions used in the industry [18].

The central class in this architecture is the Participant, which acts as the main
server for remote client requests, invoking operations in the local instance of the ap-
plication. The Conference, instantiated by the Manager, keeps track of a group of
Participants. It provides the same interface for channel events (section 3.4) as Partici-
pants do but broadcasts them to its members, either directly or through LuaConfer-
ence, as discussed below. The abstract class Partner acts as a superclass for both Par-
ticipants and Conference.

The main CORBA classes are described below:

Partner: Declares the interface for the methods that treat the communication channel
events, actually implemented by Participants and Conferences. Clients keep refer-
ences to a Partner.

Participant: Implements methods for treating communication channel events by
invoking the appropriate operations at the host application (command execution, set-
ting of the camera position, etc.).

Conference: Manages a group of Participants and broadcasts channel events to them.
Also keeps track of floors: if a communication channel is controlled, the participant
controlling the floor is the only one allowed to send events through this channel, as
described in the next sections.

 An Architecture for Collaborative Geomodeling 127

Manager: Manages the overall conferencing system. For a given domain (a company,
for instance), it is responsible for registering and listing participants, creating and
listing conferences, and allowing clients to connect to remote participants and confer-
ences. It is the only published object, instantiated by a daemon, and serves as the
entry point for the creation of collaboration sessions.

Partner

 run_command()
 set_camera()
 set_cursor()
 ...

Conference

 include_participant()
 exclude_participant()

 set_type()
 set_role()

 grant_floor()
 request_floor()

Participant

set_channel_controls()

Manager

 register_participant()
 create_conference()

 connect()

Client

Server

NetGocad

LuaConference

 include_participant()
 exclude_participant()

 set_type()
 set_role()

 grant_floor()
 request_floor()

 get_control_matrix()
 broadcast_command()
 late_join()

Fig. 2. NetGocad main classes (simplified)

Client, Server and LuaConference are not CORBA classes:

Client: Singleton class [9] implemented in C++. Instantiated by the application, pro-
vides methods for connecting to the Manager and to Partners, keeping references to
them. When a user performs an operation locally (executes a command, a camera
movement, etc.), a corresponding observer (redefined by the plugin for the applica-
tion) will use the Client instance to invoke the same operation on the Partner it is
connected to.

Server: Singleton class implemented in C++ used by the application to instantiate a
Participant and to register it with the Manager.

LuaConference, a module implemented in the Lua extension language [12, 16], is
created by each Conference at runtime and becomes responsible for the coordination
policies. It loads the definitions of collaboration types and participant roles (section
3.5), and interacts with the Conference to provide configurable services (session man-
agement, floor control, definition of conference types and participant roles).

128 L.P. Reis et al.

3.3 Operation

For a collaboration session to take place, a daemon instantiating a Manager needs to
be running, responsible for registering and listing available Participants and Confer-
ences, and for providing connection services.

When a group of people wants to collaborate, first somebody creates a conference,
choosing a collaboration type among the ones loaded by LuaConference, and auto-
matically becomes the conference owner. Then the other participants call the confer-
ence, choosing one of the roles specified for the current conference type. If the owner
accepts a call, the caller is allowed to join and receives rights over the communication
channels according to the chosen role (Figure 3). Afterwards, whenever a participant
sends an event to the conference over a communication channel, it is broadcasted to
all members enabled to receive it.

If somebody starts audio or video communication, the appropriate streams are cre-
ated, according to the policy in place, through the videoconferencing tool (section 4).

3.4 Communication Channels

We define a “communication channel” as an abstract path for conveying information
among instances of the application (commands, camera positions, telepointers, etc.),
subject to a control policy. To each channel corresponds a method responsible for
treating events, declared in the Partner class and implemented by Participants (except
for audio and video, which are treated separately).

For the definition of the control logic in LuaConference, all channels are treated as
elements of a homogeneous array, for which control matrices are defined. However,
for the implementation of broadcasting mechanisms, we subdivide channels into in-
teraction channels, command channels and streaming channels.

Interaction channels carry events that are generated by direct manipulations inside
the 3D camera (camera movements, telepointers, avatars), that need to be processed at
high rates for smooth graphic interactivity. Three-dimensional cursors (telepointers)
identifying their users by color or label (Figure 1) allow participants to point to shared
objects. Avatars display the position of the camera and the frustum of a participant, in
conferences involving participants with non-synchronized points of view.

These events are not passed through the conference virtual machine (LuaConfer-
ence). Instead, their broadcasting is done by the CORBA Conference and controlled
by the switches (control matrices) set for the channel, as described below. If all par-
ticipants are free to send and to receive the events, broadcasting is done through
CORBA’s Event Service. Otherwise, this service cannot be used, because it provides
no event filtering. The Notification Service (an extension of the Event Service) does
allow event filtering and independent quality of service (QoS) control for each chan-
nel – an important feature, since different channels have different performance re-
quirements. In this case, filtering would be based on the connection matrix, but cur-
rently this service is not employed in our implementation because it is not available in
the CORBA version used [22].

Command channels carry the application commands, directly sent by the Conference
to LuaConference, which is then responsible for broadcasting. The host application

 An Architecture for Collaborative Geomodeling 129

Fig. 3. Conference user interface

commands can be classified in a resource file associating lists of commands to labels.
These lists are defined for the main application and for each plugin in a configuration
file, and are then obtained by LuaConference and used during broadcasting for pars-
ing and filtering commands. A mandatory class is “donot_broadcast”, defining all the
commands that cannot be broadcasted (registration, connection, exit, model transfer,
creation of interaction tools, etc.).

This mechanism can be used for the logical subdivision of the command channel
into separate channels, so that each can be subject to independent floor control. This
is currently done with three-dimensional annotations (freehand drawing, polygonal
lines and arrow symbols) which, although similar in effect to other graphic interaction
channels, are in fact generated by the application as commands only when the interac-
tive creation of a primitive is complete.

The same type of command processing could be used for the specification of floors
on objects and tools through the control of the commands that manipulate them.

All the commands broadcasted since the beginning of a conference are logged, to
allow late joining (logged commands are sent by the Conference to new participants
joining a session).

Streaming channels are subject to the same floor control mechanism but are handled
separately (as described in section 4), due to the specific requirements they pose (in
particular, audio and video streams are created in a peer-to-peer mode).

130 L.P. Reis et al.

Control Matrices
In a conference with n participants, for each channel, nxn matrices of boolean values
specify the connectivity state of each participant. Three types of matrices are used:
Key, Intention and Connection. Key matrices specify the rights of each participant to
send (K_out) and to receive (K_in) information to one another, according to the par-
ticipants’ roles in a certain conference type. Intention matrices specifiy the instanta-
neous intentions of participants to send (I_out) and to receive (I_in) information
(given that they have this right). Connection continuously expresses enabled connec-
tions, as the result of the compilation of Key and Intention matrices.

A connection is established when the send and receive Keys and Intentions of cor-
related participants are true. That is, for each position in the connection matrix,

Cij = (I_outij ^ K_outij) ^ (I_inji ^ K_inji)

The specification of the rights of each role to send/receive events to/from each
other role, for each collaboration type, is done as described below (section 3.5). The
nxn matrices for the participants are then dynamically assembled by LuaConference
as they enter and leave the session, based on their roles, and communicated to the host
application by the Conference. Intentions are directly specified by the participants
through the user interface controls (enabled or not according to the key values).

3.5 Collaboration Specification

The control model adopted is inspired in COCA (Collaborative Objects Coordination
Architecture) [15], but with some essential differences:

− as graphic performance is a main concern, our floor control mechanism
changes the scheme defined in COCA based on the processing of all events
through a virtual machine, for the control of input and output switches (tested
by the event observers) at the host application by the plugin;

− instead of using logic-based rules (as in COCA) or declarative programs (as in
DCWPL [3]) to define control policies – which are powerful and flexible but
can become quite difficult to write and adapt by non-skilled programmers –
we use some elegant mechanisms provided by the Lua language (tables in par-
ticular) to create a simple object-oriented syntax for the specification of col-
laborations, which are interpreted by the LuaConference virtual machine at
runtime.

This scheme allows the definition of the different types of Collaborations that a
conference can assume. Collaborations contain Roles (associated to the participants)
and communication channels, for which floors can be defined. Collaborations specify
an extensible set of default functions to provide floor services, session management
services and regulation services (specification of conference types and participant
roles), which can be redefined for particular collaboration types.

Communication channel names are associated to the host application’s channel in-
dexes. For each channel of a collaboration type the rights of each role to send/receive
to other roles are specified (Key matrices). By default all channels are open (true
values in the matrix do not need to be specified, only blocked connections need to be
specified with false values).

 An Architecture for Collaborative Geomodeling 131

Intention matrices by default are also filled with true values. False entries are used to
specify connections initially blocked (for instance, for audio and video channels, so that
no more than the desired streams are created in the beginning of a videoconference).

The controllable channels (the ones for which floors can be established by the con-
ference owner during the conference) are defined; all others will remain free (with no
floor control, although participants may still opt not to send or receive over the chan-
nel). Default roles for the conference owner (the participant who started the confer-
ence) and for new participants are also defined.

The communication between LuaConference and the Conference class in the host
application follows the conventional mechanisms for Lua.

As an example, let us show part of a simplified definition for a well steering ses-
sion, with some very basic roles and polices. In this example, VR users cannot send or
receive camera events to/from anybody, and operators do not receive or send video
streams at the beginning of the session (but can receive the floor afterwards).

 -- correlate channel names to application indexes

appl_channels = {cmd=0, cam=1, annot=2, cursor=3, audio=4, video=5, avatar=6}

WellSteering = Collaboration { -- define a collaboration type
 type = "wellsteering",
 channels = {"cmd", "cam", "annot", "cursor", "audio", "video"}, -- controllable channels
 floors = {"cmd", "cam"}, -- channels initially under floor control
 LeadGeoscientist = Role {type = "leader"}, -- define roles
 Geoscientist = Role {type = "geoscientist"},
 VrGeoscientist = Role {type = "vr"},
 OnSiteOperator = Role {type = "operator"},
 K_in = { ["cam"]= {["vr:all"]=false} }, -- define role-based matrices for
 K_out = { ["cam"]= {["all:vr"]=false} }, -- each channel (all other role pairs,

 I_in= { ["video"]= {["operator:all"]=false} }, -- for all channels, are true by default)
 I_out= { ["video"]= {["operator:all"]=false} },
 default_owner_role = "leader", -- default role assumed by the owner
 default_participant_role = "geoscientist", -- default role for other participants
}
 -- Obs: K_out, K_in, I_out, I_in are true for all other role pairs, for all channels

Collaboration methods can then be redefined in Lua, in an object-oriented way (for

instance, ClassRoom:grant_floor).

LuaConference Interface
The interface provided by LuaConference to the host application implements the
collaboration services (session management, floor control, etc.). Below is an extract
of some of the main methods:

-- Session Management
function include_participant(participant, role)
function exclude_ participant (participant)

-- Floor
function grant_floor(ch, participant, requester)
function request_floor(ch, requester)
function get_floor_controller(ch)

 -- Regulation
function set_type(type) -- set collaboration type
function get_type()

132 L.P. Reis et al.

function get_collaboration_types()
function init_channels()
function set_role(participant, role)
function get_role(participant)
function get_collaboration_roles(collab_type) -- return list of roles for the collaboration

// Broadcast commands
 function broadcast_command(command, sender)

 // Channels control
function get_control_matrix(M, ch) -- assembles the nxn participants matrix for the
 -- channel, given the role-based control matrix M
 -- (one of K_out, K_in, I_out, I_in)
 // Late join

 function late_join(participant) -- send all logged commands to the new participant

4 Videoconferencing

Audio and video communication channels are provided in NetGocad through the use
of a custom multiplatform videoconferencing tool, CSVTool (Collaboration Sup-
ported by Video) [20]. This allows for a tight integration of this service, with no
duplication of session management functionalities, and the direct control of audio and
video streams according to the coordination policies defined.

The tool is integrated into the system through a separate plugin (gCSV) to avoid
the establishment of a dependency. If the plugin is not present, the commands relative
to videoconferencing are simply ignored.

Fig. 4. CSV with NetGocad

CSVTool
Server

CSVTool
Client A

CSVTool
Client C

CSVTool
Client B

Corba

 NetGocad C

System call

 NetGocad A NetGocad B

Conference

RTP

 An Architecture for Collaborative Geomodeling 133

CSVTool is implemented with JMF (Java Media Framework) [24] and can be used
in two modes: integrated into a collaborative application or as standalone videocon-
ferencing tool. Independently of the operation mode, it is divided into two modules,
the server and the client. The server is responsible for the management of the partici-
pants and videoconferences, as described in the next section.

All the information exchanged among clients, except the audio and video streams,
passes through the server. The most common messages are addition and removal of
participants, which imply the creation or removal of streams. The server is not prone
to traffic overburden because it does not receive the “heavy traffic” – the streams –
which is transmitted directly between clients, in a peer-to-peer fashion.

The client/server communication is implemented in CORBA, and the communica-
tion among clients for stream transmission is made in RTP (Real- Time Protocol).

3 1 4 2 5 2 3 1

Fig. 5. CSVTool interface. Each audio/video control button may assume five different configu-
rations: 1.Disabled: the respective stream cannot be activated because the capture device is
unavailable or is disabled due to the participant’s role in the current conference type – the
button becomes gray; 2. Active: the connection is active; 3. Off: both participants do not want
to activate the stream –the button is dashed and hachured; 4. Waiting: the local participant
wants to activate the streams, but the remote participant does not – the background of the but-
ton is hachured; 5. External: the remote participant wants to activate the streams, but the local
participant does not – the button is dashed. Other buttons activate additional resources such as
textual chat and snapshots.

134 L.P. Reis et al.

CSV Operation with NetGocad
When a NetGocad participant starts a videoconference, the Conference launches a
CSV server through its owner (Figure 4) and informs all Participants to start CSV
clients, which automatically connect to the server.

The CSV server is then responsible for managing the clients and audio and video
streams. All the communication between the NetGocad Conference and the CSV
Server is done in CORBA, through the conference owner.

Control matrices move between the CSV clients and the server, whenever neces-
sary, by means of message exchange. Key and Intention matrices are sent by the Net-
Gocad Conference to CSV, which uses them to set the connections’ state.

The CSV tool updates the received Key matrices to indicate the availability of cap-
ture devices at each participant’s machine, tested at start time. Conceptually, disabling
a connection due to a participant’s role in a certain conference type is equivalent to
switching off the device needed to send or to receive the related information.

One interesting feature provided is that the video stream sent by each participant
can be switched from the image captured by the camera to the captured screen, so the
tool can also be used for the remote display of a user’s desktop. This is very useful for
explanations about the operation of the application, or for consistency checks.

Complementary to the connection matrix, an External Intention matrix is computed
in CSV to reflect connections that are not established because just one side decided
not enable the stream. This information is used for the selection of the appropriate
icon to represent the state of the connection at the user interface (Figure 5). As users
have individual windows relative to one another, the intentions for each channel di-
rection can be explicitly indicated. For the other channels, the setting of controls is
done in a one-to-all basis (Figure 3).

5 Conclusion and Future Work

In this paper we presented an architecture that enables the transformation of a single-
user application into a collaborative system by means of the integration of runtime
plugins. We developed a control mechanism suited to the requirements of the applica-
tion domain (collaborative three-dimensional geomodeling and visualization) and to
the multimedia communication channels employed, based on the use of matrices
associated to the channels, defining role-based rights and the dynamic intentions of
the participants

The control scheme proposed, integrated into the application through a simple and
flexible scripting language, generalizes the treatment of the different channels consid-
ered taking into account their specific performance demands. This scheme can be
adapted to any application that follows some established design principles, particu-
larly the use of the Command, Abstract Factory and Observer patterns.

We have concluded the integration of the tools and control mechanisms described,
and are currently developing specific control policies for the scenarios discussed and
others.

There are many issues that we would like to consider next. We want to assess the
usability of the system under heterogeneous configurations, especially with the use of
the VR plugin. This raises many usability issues that will require further development

 An Architecture for Collaborative Geomodeling 135

of the immersive interface. We also need to conduct evaluations using an adequate
methodology tailored for groupware, an issue now being studied.

Other difficult CSCW concepts we want to explore in the future are the use of pri-
vate views, concurrency control and asynchronous collaboration supported by the
workflow engine used by the core application.

We expect that in the long term the integration of these features will create new
collaboration tools which will certainly have a strategic importance in the industry.

References

1. Anupan, V. and Bajaj C.: SHASTRA: An Architecture for Development of Collaborative
Applications. IEEE Multimedia, Vol. 1, Number 2 (1994) 39-49

2. Campos, J.L.E.: Real-Time Well Drilling Monitoring using gOcad. 22nd GOCAD Meeting
(2002) web site: www.ensg.inpl-nancy.fr/GOCAD/meetings/Nancy2002/

3. Cortez, M. and Mishra, P.: DCWPL: A Programming Language for Describing Collabora-
tion Work. In: Proceedings of the ACM Conference on Computer Supported Cooperative
Work (1996) 21-29.

4. Dewan, P.: Architectures for Collaborative Applications. In: Beaudouin-Lafon, M. (ed.):
Computer Supported Co-operative Work, Vol. 7 of Trends in Software. John Wiley &
Sons (1999) 169-193.

5. Dommel, H.P. and Garcia-Luna-Aceves, J.J.: Floor Control for Multimedia Conferencing
and Collaboration. Multimedia Systems, Vol. 5, Number 1 (1997) 23-38

6. Edwards, W. K.: Polices and Roles in Collaborative Applications. In: Proceedings of the
ACM Conference on Computer Supported Cooperative Work (1996) 11-20.

7. Ehrlich, K.: Designing Groupware Applications. In: Beaudouin-Lafon, M. (ed.): Computer
Supported Co-operative Work, Vol. 7, Trends in Software. John Wiley & Sons (1999) 1-28.

8. Ellis, C.A and Gibbs, S.J.: Concurrency Control in Groupware Systems, SIGMOD Con-
ference, Vol. 18 (1989) 399-407

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley (1995)

10. GOCAD Research Consortium, web site: www.gocad.org
11. Gruchalla, K.: Immersive Well-Path Editing: Investigating the Added Value of Immersion,

In: Proceedings of IEEE Virtual Reality (2004) 157-164
12. Ierusalimschy, R, Programming in Lua, Lua Org (2003)
13. Inside Reality, web site: www.oilfield.slb.com/content/services/software/virtual/index.asp
14. Leikness, S., Osvoll, I.: Success Factors in Troll Geosteering. Offshore Technology Con-

ference (2005)
15. Li, D., Muntz, R.: Coca: Collaborative Objects Coordination Architecture. In: Proceedings

of the ACM Conference on Computer Supported Cooperative Work (1998) 178-188
16. Lua, web site: www.lua.org
17. Mallet, J.L., Geomodeling, Oxford University Press (2002)
18. Open Spirit, web site: www.openspirit.com
19. Pang A., Wittenbrink, C.M., Goodman T.: CSPray: A Collaborative Scientific Visualiza-

tion Application. In: Proceedings Multimedia Computing and Networking, Vol. 2417
(1995) 317-326

20. Pozzer, C. et al :A Multi-user Videoconfernce-Based Collaboration Tool: Design and Im-
plementation Issues, In: Proceedings of the 9th International Conference on CSCW in De-
sign (2005) 547-552

136 L.P. Reis et al.

21. Prakash, A.: Group Editors. In: Beaudouin-Lafon, M. (ed.): Computer Supported Co-
operative Work, Vol. 7 of Trends in Software. John Wiley & Sons (1999) 103-133

22. Puder, A., Romer, K.: Mico: An Open Source CORBA Implementation", Morgan Kauf-
mann (2000)

23. Sun, C. and Chen, D.: Consistency Maintenance in Real-Time Collaborative Graphics Ed-
iting Systems. ACM Transactions on Computer-Human Interaction ,Vol. 9, Issue (2002)
1-41

24. Sun Microsystem, Java Media Framework Home Page, web site: java.sun.com/products/
java-media/jmf/

25. Tay, F.E.H., Roy, A: CyberCAD: A Collaborative Approach in 3D-CAD Technology in a
Multimedia-Supported Environment. Computers in Industry, Vol. 52, Number 2 (2003)
127-145

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 137 – 144, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Remote Control Point Motion Prediction in
Internet-Based Real-Time Collaborative Graphics

Editing Systems

Bo Jiang1,2, Jiajun Bu1, Chun Chen1, and Jianxv Yang1

1 College of Computer Science, Zhejiang University, Hangzhou, P.R. China
2 College of Computer and Information Engineering,

Zhejiang Gongshang University, Hangzhou, P.R. China
{nancybjiang, bjj, chenc}@zju.edu.cn,

yangjianxv@yahoo.com.cn

Abstract. Monitoring the remote motion of objects or the control points of ob-
jects is one of the most important ways to promote awareness in Internet-based
real-time collaborative graphics editing systems. However, such kind of remote
control point motion is usually influenced by network jitter which leads to halt-
ing and jumping presence. Although motion prediction has been proved effec-
tive to complement the negative effect of jitter, the low accuracy of prediction
remains a problem. In this paper, we present novel algorithms that can improve
the accuracy to restore the remote motion smoothly and immediately. The pre-
diction algorithms have been implemented in CoDesign - a prototype system of
collaborative graphics editing. Experiments were carried out to test the effec-
tiveness of the algorithms and the results show that by applying effective re-
mote motion prediction the usability of the system can be greatly enhanced.

1 Introduction

As a special class of synchronous groupware systems, Internet-based real-time col-
laborative graphics editing systems (GES) [1, 2, 3, 4] allow several users geographi-
cally distributed to simultaneously view and edit the same graphics document. To
achieve high responsiveness, a replicated architecture is usually adopted in which the
shared documents are replicated and scattered at collaborating sites. Supporting good
awareness [5] makes cooperators understand others’ up-to-the-moment activities in a
shared workspace, which becomes a crucial part of a successful collaborative GES
with replicated architecture.

Monitoring the state of artifacts in a shared working setting is one of the most ef-
fective ways to gain awareness information. It is usually necessary for people to trace
the movement of the artifacts which operated by cooperators especially in closely-
coupled collaborative work. However, displaying the procedure of remote moving or
dragging operations on certain artifacts often seems jumpy for the traits of delay and
jitter of Internet. Incorrect representations of the movement of artifacts can lead to
misunderstanding and even operation conflicting in collaborative graphics design.
Therefore, ameliorate the effects of delay-jitter to display the remote motion in time

138 B. Jiang et al.

and smoothly becomes one of the most significant challenges in the designing and
implementation of a successful GES with fine awareness.

The obvious solution to minimizing the effects of jitter is to introduce a buffer at
the receiver to smooth the arrival process [6]. By applying such scheme, the buffered
stream starts later but plays smoothly. Buffering eliminates jitter by increasing overall
latency. However, delayed replay of collaborators’ work will make great negative
impact on the effect of awareness in real-time collaborative GES. Tracing [7] the
visual embodiments of groupware system enhances the visual representation of col-
laborators’ motion and complements the problem of jitter. As tracing can hardly
maintain the immediacy or the naturalness of the original embodiments’ motion, the
technique is limited. Telepointer (one of the embodiments in collaborative workspace)
prediction [8] is tested to be an effective way to present immediate and natural remote
interaction. Yet little has been done to improve the accuracy of prediction.

In this paper we investigate the use of motion prediction as a technique for elimi-
nating jitter effect on presence of remote motion. We first introduce Dead-reckoning
algorithms into our system. We then present the Machine Learning algorithm that
improves the prediction accuracy in certain degree. Adapting to the editing habit of
users, prediction algorithms with Changeable Scale is proposed which shows better
prediction performance in GES. Experiments of prediction algorithms are used to test
the effectiveness of the prediction and the corresponding results are reported.

The structure of this paper is as follows: Section 2 describes the main characteris-
tics of a collaborative GES with high usability and depicts the jitter effect on Control
Point Based MOVE Operation. Section 3 presents three prediction algorithms and the
corresponding experiments that test the effectiveness of the algorithms. Section 4
proposes comparison to related work. Finally, Section 5 concludes the paper.

2 Background

The goal of real-time distributed collaborative GES is to allow people in different
places to edit shared graphics documents, as naturally and simply as they do in face-
to-face collaboration. The critical issue in designing and implementing real-time col-
laborative GES with high usability in non-deterministic communication latency net-
work environment is to meet the following requirements:

1. high concurrency and relative unconstrained: multiple users should be allowed to
edit any part of the document at any time freely and users concentrate on certain
parts of workspace that related to the assigned design work in most cases;

2. high responsiveness and good awareness: the response to local user actions must
be quick and users can obtain detailed knowledge of remote users’ activities.

2.1 Control Point Based MOVE Operations

Among various operations that can be acted on objects in object-based GES[4, 10],
there’s a special class of operations that related to the movement of a particular

 Remote Control Point Motion Prediction 139

 (a) (b)

Fig. 1. Examples of CPB MOVE Op

control point, which is called Control Point Based MOVE Operation (CPB
MOVE Op). In Fig. 1a operation MOVE changes the flower’s coordinate from
position A to position B. In Fig.1b the shape of the polygon is modified by drag-
ging Point C. Control points are the centre of the flower and Point C respectively
in these examples.

It is always required that a continuous transmission of XY locations of control
points to be sent over a network to provide collaborators the awareness information of
the control point motion related to CPB MOVE Ops.

2.2 Jitter Effect on Control Point Based MOVE Operations

Distributed operation introduces communication delays between the collabora-
tive sites on the Internet. Often, networks exhibit variability in delay, called
jitter which can result in a jerky presentation of remote participant's actions.
Continuous CPB MOVE Ops streams are sensitive to jitter that is due to the
transmission over the Internet, such as transmission delay, propagation delay
and queuing delay.

Tracing the continuous changing effect of the remote control point is aimed at con-
veying a sense of natural presence of others’ activity, and the motion should be
smooth. The control point’s position must be updated with the pace of the movement
of original motion. However, jitter over wide area network may lead to the following
problems in closely-coupled collaborative graphics editing:

1. semantic misunderstanding: users may have an ambiguous idea of the seman-
tic intention of remote user by monitoring the jerky display;

2. operation conflicting[9]: as it can be hardly to specify whether the halt of the
motion is caused by jitter or not, users may take it for granted that the remote
CPB MOVE Op task has been fulfilled and move the object that conflicts with
remote CPB MOVE Op.

It is obvious that late-received control point stream and discontinuous presentation
of others’ motion that caused by jitter may decrease the usability of the system. In the
following paragraphs, we present the scheme of control point prediction that can com-
plement the effect of jitter.

140 B. Jiang et al.

3 Prediction Algorithms

Predicting the next location of control point based on past positions to simulate the
actual track of the motion can eliminate the negative effect that brought by jitter. In
the flowing paragraphs we present prediction algorithms used in our prototype sys-
tem. We carried out corresponding experiments to evaluate the effectiveness.

3.1 Basic Dead-Reckoning Algorithm

(1) Algorithm
The first algorithm we used is a basic Dead-reckoning scheme. Dead-reckoning has

been widely and successfully used in Internet game where Dead-reckoning improved
player’s interaction with distributed objects [8, 10, 11].

Here we indicate the next position of the control point by (Xnext, Ynext) while the
current position of the control point by (Xcurrent, Ycurrent). The next position is calcu-
lated according to the following formula:

Xnext = Xcurrent + aveVelocityX + aveAccelerationX ,
Ynext = Ycurrent + aveVelocityY + aveAccelerationY .

where, aveVelocityX and aveVelocityY indicate current average velocities of the con-
trol point in x and y axes. aveAccelerationX and aveAccelerationY indicate current
average acceleration of control point in x and y axes.

(2) Effectiveness
We carried out an experiment to test the effectiveness of the algorithm. Ten volun-

teers (5 male, 5 female) from local University and pattern designing company were
invited to our lab. The experiment was conducted on Dell PC running CoDesign sys-
tem application, using a 17-inch monitor set to 1024x768 resolution, 256M memory
and 2.4G CPU. While volunteers were drawing and moving some graphics objects
from one position to another, jitters were generated by a simulation application to
simulate unstable network. Our prediction system application adopts the Dead-
reckoning prediction and Machine Learning prediction respectively. At the end of
jitter, system calculates the error of prediction, difference between the last predicted
position and corresponding true position extracted from received package at the end
of jitter. The testing result is shown in Fig.2.

3.2 Machine Learning Algorithm

(1) Algorithm
As it is shown in Fig. 2 mean error of the basic Dead-reckoning algorithm is unbear-
able with the increase of network jitter period. To solve the problem, the basic Dead-
reckoning was improved to better smooth the prediction trace of control point. The
new prediction system, which is called Machine Learning Algorithm, is able to adjust
the prediction algorithm dynamically according to the former prediction error in the
practical environment. The predicted position is calculated as follows:

X’next = Xcurrent + aveVelocityX + aveAccelerationX + x = Xnext + x ,
Y’next = Ycurrent + aveVelocityY + aveAccelerationY + y = Ynext + y .

 Remote Control Point Motion Prediction 141

where, x and y are variables to correct the values of Xnext and Ynext respectively.

x is related to: (1) the difference between last predicted X and first true X received
at the end of jitter in the previous prediction process. (2) Current jitter lapse. (3) Jitter
period in the previous prediction process. If it is the first time to predict, we did not
consider x and y . Calculation of y is similar to that of x . To illustrate the

algorithm:

x 2 = (X1’last –X1 true) * JitterLapse2 * 0.5 / JitterPeriod1,

where, subscript 1 indicates the previous prediction process, while subscript 2 indi-
cates the current prediction process. X1’last is the last predicted position in the previous
prediction process. X1 true is the blocked last true value by the previous network jitter
in the previous prediction process.

(2) Effectiveness
We carried out the similar experiment as above. The testing result of Machine

Learning is shown in Fig.2.

Fig. 2. Mean Error for 5 jitter periods with dead-reckoning and Machine Learning. The mean
error is a difference divided by a unit length. If the mean error > 1, we record it as 1, for it is
beyond the prediction region too far. The difference is distance between the last predicted
position and first position extracted from received package at the end of jitter. The unit length
indicates a local area with user’s most frequent activities. In our prediction system, the unit
length = 10% of diagonal of canvas.

Generally speaking, Machine Learning is better than Dead-reckoning in terms of
prediction accuracy, especially at the higher jitter periods. However, as illustrated,
Dead-reckoning is better than that of Machine Learning at 240 ms.

3.3 Changeable Scale Algorithm

(1) Algorithm
As we know, in a certain period of time user usually concentrates on his/her nearby

editing areas. When a control point is moved to somewhere else, new position will not

142 B. Jiang et al.

be far from the original one. The improved prediction algorithm, Changeable Scale,
adapts to human habit in order to enhance the accuracy of the prediction in GES.

The main idea of the algorithm is to adjust prediction power according to the dis-
tance between the position user begin to drag and predicted position by original algo-
rithm, such as dead-reckoning or machine learning. The longer the distance between
the two positions is, the lower the next prediction power could be. The algorithm is as
follows:

next next next current X X

next next next current Y Y

X' = X * X = X + aveVelocity + aveAcceleration
, .

Y' = Y * Y = Y + aveVelocity + aveAcceleration
where

α
α

Where,

1 ,

/ ,

Length U nitLength

U nitLength Length Length U nitLength
α

≤
=

>
 ,

where, Length is the distance between the position user begin to drag and predicted
position by original algorithm. UnitLength is a unit length defined by system, which
was described above.

Therefore, there is a circle centered by the position user begin to drag, with a radius
of UnitLength. If the predicted position by original algorithm is within the circle, we

Fig. 3. Mean Error for Dead-reckoning with and without changeable scale

Fig. 4. Mean Error for Machine Learning with and without changeable scale

 Remote Control Point Motion Prediction 143

take the dead-reckoning algorithm unchanged for we get α = 1. While the predicted
position by original algorithm is without the circle, we take UnitLength / Length.

(2) Effectiveness
According to the experiment, comparison of the prediction with changeable scale

to the prediction without changeable scale is shown in Fig. 3 and Fig. 4. As shown in
both figures, prediction with changeable scale is better than that without changeable
scale in terms of prediction accuracy, especially when jitter period increases.

4 Comparison to Related Work

Some work has been done in smoothing the display of remote motion of embodi-
ments. [5, 8] applied Dead-reckoning to improve player’s interaction with distributed
objects in games. However, Dead-reckoning only presents good performance in pre-
dict the motion of objects that force-based and strong inertial properties. [9] Dead-
reckoning prediction was applied to reduce the effects of jitter on telepointer motion.
Experiments were carried out and suggest that prediction can increase the immediacy
and naturalness of remote interaction in groupware system. Yet the accuracy of pre-
diction remains a problem.

In our work, motion prediction of control point of objects in GES is studied. Machine
Learning Algorithm improves the predicting accuracy of Dead-reckoning by adjusting
the prediction algorithm dynamically according to the former prediction error. The
performance is further enhanced by integrate Changeable Scale with the former algo-
rithms. The control point movement will rarely be random because control point motion
is bound with certain designing artifact. The intended motion in GES helps to attain
better prediction performance. Experiments show that the improved prediction algo-
rithms maintain the performance of prediction accuracy at usable levels.

5 Conclusions

Supporting awareness is an idea that holds promise for improving the usability of
real-time collaborative graphics editing system. Restoring the consistent and immedi-
ate motion track of artifacts that controlled by remote user is proved to be effective to
promote awareness. However, motion display performs poorly on Internet for delay
jitter. In this paper, algorithms that used to predict the motion of control points in
Internet-based real-time GES are presented. Machine Learning algorithm that im-
proves prediction accuracy by taking the former prediction error into account.
Changeable Scale algorithm that adapts to users’ editing habits presents better predic-
tion performance. Experiments are explored to report and compare the effectiveness
of each algorithm. The study shows that the algorithms we proposed can limit the
impact of jitter and provide collaborators with smooth and accurate motion awareness
information, furthermore, dramatically improve the usability of GES.

We are pursuing our work in several directions. One is to develop adaptive motion
prediction schemes suitable for various jitter periods and different graphics editing
operations. Another one is to consider more sophisticated prediction scheme based on
the characteristics of GES.

144 B. Jiang et al.

Acknowledgements

This paper is supported by Zhejiang Provincial Natural Science Foundation of China
under Grant No. Z603231. Thanks to the volunteers for taking part in the experiments.

References

1. C. Sun and D. Chen: Consistency Maintenance in Real-Time Collaborative Graphics Edit-
ing Systems. ACM Transactions on Computer-Human Interaction. 9,1 (2002) 1-41

2. X. Wang, et al. Achieving Undo in Bitmap-Based Collaborative Graphics Editing Sys-
tems. In: Proceedings of 2002 ACM Conference on Computer Supported Cooperative
Work (CSCW'02), November 16-20. New Orleans, Louisiana, USA (2002) 68-76

3. Xianghua Xu, Chun Chen, Jiajun Bu and Yong Li: Distributed Dynamic-locking in Real-
time Collaborative Editing Systems. In: Proceedings of 10th International Conference on
Groupware (2004) 271-279

4. Bo Jiang, Chun Chen, Jiajun Bu: CoDesign-A Collaborative Pattern Design System Based
on Agent. In: Proceedings of the Sixth International Conference on Computer Supported
Cooperative Work in Design, Canada (2001) 319-323

5. Gutwin, C., and Greenberg, S.: The Importance of Awareness for Team Cognition in Dis-
tributed Collaboration. In: E. Salas and S. M. Fiore (Editors) Team Cognition: Under-
standing the Factors that Drive Process and Performance (2004) 177-201

6. A. Dan, D. M. Dias, R. Mukherjee, D. Sitaram, R. Tewari: Buffering and Caching in
Large-Scale Video Servers. In: Proceedings of the 40th IEEE Computer Society Interna-
tional Conference, Washington, DC, USA (1995) 217-224

7. Gutwin, C. Traces: Visualizing the Immediate Past to Support Group Interaction. In: Pro-
ceedings of Graphics Interface 2002, Calgary (2002) 43-50

8. Gutwin, C., Dyck, J., Burkitt, J.: Using Cursor Prediction to Smooth Telepointer Jitter. In:
Proceedings of Group 2003 (2003) 294-301

9. Sun, C. and Chen, D.: A Multi-version Approach to Conflict Resolution in Distributed
Groupware Systems. In: Proceedings of the 20th IEEE International Conference on Dis-
tributed Computing Systems. Taipei, Taiwan (2000) 316-325

10. Capin, T., Pandzic, I., Thalmann, D., Magnenat-Thalmann, N.: A Dead-Reckoning Algo-
rithm for Virtual Human Figures. In: Proceedings of VRAIS'97 (IEEE Press), Albuquer-
que, USA (1997) 161-168

11. Durbach, C. and Fourneau, J-M: Performance Evaluation of a Dead Reckoning Mecha-
nism. In: Proceedings of the Second International Workshop on Distributed Interactive
Simulation and Real-Time Applications, IEEE Press, Montreal, Canada (1998) 23-32

Synchronization Contexts as a Means to
Support Collaborative Modeling

Niels Pinkwart

University of Duisburg-Essen, Faculty of Engineering,
47048 Duisburg, Germany
pinkwart@collide.info

Abstract. This paper presents an approach to support collaborative
modeling with graph based representations. In particular, the problem
of partially shared models with associated semantics is addressed, and
an architectural solution to enable flexible modes of partial application
synchronization under the constraint of retaining a common semantics
in the shared model parts is presented.

1 Introduction

In science, the term model refers to a schematic, simplified and idealized repre-
sentation of an object or a domain in which the relations and functions of the
elements of the objects are made explicit. There is an analogy between the model
and the object it describes in the sense that these two are structurally identical.
Modeling is understood as the activity of creating, manipulating and using mod-
els. As models are a simplified and manageable means of understanding complex
real phenomena, the importance of modeling in a number of professional and
educational usage scenarios is evident [6].

A general function that computers can have in the domain of modeling is
that they can serve as tools that execute models or run simulations based on
models. Both is possible for many rather formal modeling languages like, e.g.,
Petri Nets [10] or System Dynamics [3]. Current networked computer systems
are technically able to go beyond this. Archival and retrieval functions can, e.g.,
foster the exchange and re-use of modeling material. Networking also principally
enables a cooperative synchronous use of modeling tools.

Among the variety of representations that can serve as a means for modeling,
this paper concentrates on graph based ones - i.e., models consisting of visually
explicit objects and their relationships. Several studies [8,12] indicate that this
representational type (as opposed to, eg., textual forms or formulas) has certain
advantages - including aspects like guidance for the users, the explicit structure
of the model, and the fact that graphs seem to be inviting to users to ”try out”
creative solutions, which is an important aspect in modeling.

In addition, graph based representations are widely used, and the variety of
modeling languages that rely on graph based representations (or that can, as
one alternative, be represented in such a notation) is impressing. More formal

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 145–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

146 N. Pinkwart

languages with exactly defined semantics are, e.g., Petri Nets [10], System Dy-
namics [3], or Entity-Relationship diagrams [2]. Languages with an intermediary
level of formality (i.e., some parts of the expressions allow for an automatic in-
terpretation and simulation, while others do not) include, e.g., most diagram
types of the unified modeling language UML [1]. Finally, there are also a lot of
qualitative modeling techniques that make use of graph based representations.
In those, the object and link types can usually be exactly distinguished and are
possible subject of interpretation, the content of these objects and links however
is usually not accessible to computer based interpretation techniques. Examples
of this category include mapping techniques like concept mapping [9].

This paper describes an approach that, retaining openness concerning the
range of supported graph based modeling languages, focuses on the critical ques-
tion of how to gain flexibly while (partially) sharing models that have associated
formal or semiformal semantics.

2 Synchronization Contexts in Graph Based Modeling

2.1 Basics

Attempting to formalize shared graph based models, it is reasonable to start
with a description of visual graph models:

Definition 1. Let N be a set of elements called node types, and let N be a set
of nodes. Then a mapping dom : N �→ N is called a node type mapping. The
image of dom, written dom(N), is called node domain of N. Edge type mappings
and edge domains are defined in analogy. If domN : N �→ N and domE : E �→ E
are node type and edge type mappings, then a graph G=(N,E) is called a typed
graph over (N ,E).

The following definition adds visual information to the concept of typed
graphs:

Definition 2. Given two sets VN and VE, called visual node attributes and
visual edge attributes, then a pair L=(λN , λE) of mappings with λN : N �→ VN

and λE : E �→ VE is called a layout of a Graph G=(N,E).

A typed graph with associated visual attributes is referred to as a visual
typed graph. This definition of a layout for a graph is abstract in the sense that
it does not prescribe concrete sets VN and VE . Typical parameters would, e.g.,
be cartesian coordinates. Yet, a variety of alternatives (like, e.g., explored in
visual language theory), are possible here.

To enhance visual typed graphs to ”real” models, two more ingredients are
necessary: syntax and semantics. While syntactic issues can be addressed using
constraints over the visual typed graphs, the following definition for semantics
is based on the formal notion of computational model semantics [5]:

Synchronization Contexts as a Means to Support Collaborative Modeling 147

Definition 3. Let G be a set of visual typed graphs. Then a couple (D,Ip), con-
sisting of a semantic domain D and a semantic mapping Ip : G �→ D is called a
graph semantics for G.

This notion of graph semantics is independent of node and edge domains.
Though this may appear unusual, as typically the semantics of graph based
models are tightly bound to a modeling language and its primitives, the approach
of partially decoupling semantics from concrete node and edge domains can
contribute to model interoperability: it allows for defining semantic mappings
that bridge gaps between modeling languages.

Although the semantic mapping is defined on the graph level, a lot of mod-
eling languages allow for a decomposition of the semantic mapping in the sense
of concrete node and edge semantics: here, notations like Ip(nG) (n being a node
in the graph G) and, correspondingly, Ip(eG) make sense. Two examples:

– The semantics of a node in a calculation tree can be defined as the result of
computing the value of the subtree.

– In the field of Petri Nets, the semantics of a place node can be identified as
the number of tokens that the place contains.

2.2 Synchronization Contexts

One of the distinguishing factors between the present work and comparable ap-
proaches in the domains of metamodeling and visual languages is the explicit
support for collaborative usage scenarios with flexibly shared representations.
Though typically the concrete support for these mechanisms will be done on the
concrete implementation level, there is a foundational issue that can be dealt
with well already on the conceptual level: sharing graph structures, there is a
possible discrepancy between flexibility of synchronization and coherence (or clo-
sure) requirements of models. The logical consequence of aiming at maximum
degree of flexibility in sharing graph structures is to allow for a synchronization
of arbitrary substructures (i.e. subgraphs) to the extreme case of having only
single nodes synchronized. These partially shared structures have interesting
application areas and allow for flexible work modes. An example for this is the
following: with partially synchronized graphs, it is possible for users to privately
work on the construction of a model and to ”publish” only selected parts of it,
e.g., a subgraph that contains some explicitly marked result elements. Insight
into the way that these results were elaborated does not necessarily have to
be granted to the group. There are also many ways of orchestrating these pri-
vate/shared collaboration scenarios with partially shared models, as exemplified
in the domain of mathematics [7].

While this degree of flexibility sounds attractive, there are also situations
in which partially shared models may be problematic. Apart from the general
question how edges could be coupled without also sharing the nodes that an
edge connects, a critical point is that partially sharing models may lead to dis-
crepancies between the semantics of the shared model parts. This is due to the

148 N. Pinkwart

Fig. 1. The problems of partial synchronization

fact that the semantic mapping function is, in general, not context-free. It is
not only the general graph semantics that varies, but also that of single nodes
which are contained in both of the partially shared models. Figure 1 illustrates
this problem with the example domain of Petri Nets. The two workspaces are
partially synchronized and differ only in the presence of one single place (p1) and
its connection to the transition t1. This causes the semantics of t1 to change,
and in particular also affects the semantics of the whole graph: the left net is
dead, whereas the right one is non-terminating.

Any general attempt to retain a common semantics between only partially
shared (and therefore non-identical) models has to face one problem: either one
single global semantics is preserved in the system (and the result is a mismatch
between local representation and global semantics), or the semantics is only
related to the respective local models. In the latter case, the problem is (as
shown in figure 1) the non-existence of a common result.

One possible strategy to deal with this problem is to restrict the degree of
flexibility concerning sharing entities. If the semantic mapping of a node does
not depend on other entities, then it is reasonable to allow this node to be
coupled independently of any other elements in the model graph. Otherwise, the
(recursively determined) set of needed model elements has to be included in the
set of shared elements:

Definition 4. Let G=(N,E) be a visual typed graph with a semantics Ip(G),
and let n ∈ N be a node of G. If n has an associated semantic value (i.e.,
the semantic mapping Ip(nG) of n in G is defined), then a synchronization
context of n in G, denoted by Sync(nG), is a subgraph of G containing n so
that Ip(nG) = Ip(nSync(nG)). A function S : N �→ P(G) so that each node
is mapped to a corresponding synchronization context is called synchronization
context mapping. A function S : N × G �→ P(G) which accepts a node and a
graph (containing that node) as input and returns a subgraph which is a syn-
chronization context of the node in the graph is called a generic synchronization
context mapping.

Synchronization Contexts as a Means to Support Collaborative Modeling 149

Definition 5. A synchronization context Sync(nG) is called minimal if no real
subgraph of Sync(nG) fulfills the synchronization context condition for n in G.

Proposition 1. Let G=(N,E) be a visual typed graph with a semantics Ip(G),
and let n ∈ N be a node of G with defined semantic mapping Ip(nG). Then a
minimal synchronization context of n in G exists but is, in general, not unique.

Proof. A trivial synchronization context of n in G is obviously G itself, so that
the existence is shown. The fact that Sync(nG) is in general not unique can be
shown with a counterexample: a calculation tree consisting of the root node n1

of type ”×”, and three child nodes n2, n3, n4 of n1 that are all of type ”number”
with Ip(n2) = Ip(n3) = 0 and Ip(n4) = 1. Here, two different minimal synchro-
nization contexts of n1 in G are spanned by the node sets N1 = {n1, n2} and
N2 = {n1, n3}.

The proof of proposition 1 shows that the minimal synchronization context
of a node in a graph can depend on the values of semantic attributes. This means
that upon a change in semantics (e.g., caused by a model simulation step), the
minimal synchronization context may change. Using synchronization contexts as
foundations for partially coupled models, this has to be taken into account: in
collaborative work contexts, a non-minimal but stable synchronization context
may be superior to a minimal but frequently changing one.

For a number of modeling languages, minimal synchronization contexts can
be defined easily, as the following example illustrates for the case of Petri Nets:

Example 1. Petri Nets are visual typed graphs that have the node type set
N = {place, transition}. For a visual typed graph G=(N,E), a minimal syn-
chronization context mapping S is as follows (for reasons of simplicity, only the
nodes that span the synchronization context graph are given):

S(n) :=
{{n} if type(n) = place
{n} ∪ {m ∈ G : (m, n) ∈ E ∨ (n, m) ∈ E} else

This expresses that places can by synchronized node-wise, whereas the ac-
tivation state and therefore the semantics of transitions depends on their input
and output places, and thus on their complete neighborhood.

A strict consideration of synchronization contexts solves the dilemma be-
tween coupling flexibility versus coherence of models. If minimal synchroniza-
tion contexts are used, the solution is even optimal in the sense that only the
”absolutely required” information is shared. Yet, even apart from the dynamics
of the minimal synchronization contexts (which may be a serious problem for
collaborative work scenarios), one problem remains: there is no generic calcula-
tion algorithm for a minimal synchronization contexts. Especially in the case of
modeling languages with non-formal semantics (like, e.g., concept maps), it is
even unclear what such an algorithm should calculate. The next section of this
paper shows an approach to solve at least some of these challenges.

150 N. Pinkwart

3 Reference Frame Synchronization

Typically, all the concepts presented in the previous section have to be combined
in order to express the characteristics of a certain modeling language. E.g., a
specific constraint mapping usually belongs to a particular set of node and edge
types, and a graph semantics may in turn rely on certain syntactic integrity
constraints. For this reason, a central concept that bundles together all the
ingredients makes sense. This can be conceived as the formalized abstraction of
a visual modeling language:

Definition 6. Let N denote a set of node types and E a set of edge types, and let
VN and VE be visual node and edge attributes. For a set C of constraint mappings,
a semantic domain D, a semantic mapping Ip, and a generic synchronization
context mapping S, the tuple R = 〈N , E , VN , VE , C, D, Ip,S〉 is called a Reference
Frame.

Based on this conceptual notion, a system architecture that allows for dynam-
ically plugging in Reference Frames has been implemented in Java [11]. Details
about type definitions, constraint mappings, and model semantics are beyond
the scope of this paper - focusing on the group work support, we concentrate on
the description of the synchronization contexts in the following:

The synchronization context mapping has an explicit representation in the
ReferenceFrame interface: a method synchronizeContext(Node, JGraph) ac-
cepts a node and a visual typed graph as parameters. In conformance with
definition 4, the policy for implementations of this method is that it calculates
a synchronization context of the parameter node in the parameter graph, and
couples the whole context instead of only the node. This way, an attempt of
synchronizing a node in a graph with other graph instances can be processed
locally, and lead to a coherently synchronized subgraph.

An alternative to this, which disburdens the developer from implementing
the (non-trivial) method, would be the automatic calculation of (in the best
case minimal) synchronization contexts. However, such a calculation is prac-
tically not reasonable unless restricting the semantics calculation severely. In
particular, the following three steps would be required: (1) a way to make ex-
plicit all the variables in nodes, edges, graph, and the Reference Frame itself
which belong to the semantics, (2) a method to compare these variables with
partially synchronized applications, and (3) a technique to build the minimal
synchronization context based on the results of the comparison. In particular
the third point is the problematic one:

– Straightforward algorithms that simply test which subgraph is a minimal
synchronization context are no real option due to their complexity, especially
taking into account that (in step 2) this is a distributed algorithm.

– The idea of relying on the comparison results (step 2 in the algorithm) does
not work either: even if the nodes and edges with varying semantics are
known, the step of determining which elements of the graph must minimally
be synchronized in order to ”repair” the inconsistency cannot be derived
easily due to the (required!) openness of the semantic mapping function.

Synchronization Contexts as a Means to Support Collaborative Modeling 151

Fig. 2. Synchronization contexts as strategies for Reference Frames

– Finally, algorithms that go into detail about the interdependencies and are
able to calculate a suitable synchronization context based on the comparison
results are very similar (and not less complex!) than the ones required for
implementations of synchronizeContext(Node, JGraph).

In order to assist the developer in the task of defining suitable synchronization
contexts, a number of typical algorithms that are applicable for a variety of
modeling languages can be pre-defined and implemented in form of a Strategy
pattern [4]:

Single Node. This simple implementation does not add any nodes to be addi-
tionally synchronized. This algorithm makes sense if the semantics of a node
does not depend on the surrounding context in the graph.

Whole Graph. The second trivial case always synchronizes the whole graph
upon the attempt to synchronize one node. This strategy guarantees a syn-
chronization context, but obviously in most cases synchronizes too much.

Connectivity Component. In modeling languages where the graph structure
plays an important role, the semantics may often be retained if the con-
nectivity component that a node belongs to is synchronized along with the
node.

Subgraph induced by Reference Frame. Typically, for ”closed” (non-
interoperable) modeling languages the subgraph of the graph which con-
sists only of types known by the Reference Frame is a good candidate for a
synchronization context.

4 Conclusions and Outlook

This paper introduced a means for adding a degree of flexibility to shared
workspace systems that make use of graphs as primary representations: us-

152 N. Pinkwart

ing synchronization contexts, also semantically rich structures can be partially
shared - the method ensures that the joint parts in all the involved applica-
tions have the same ”local interpretation”. Current versions of the Cool Modes
software [11] support the synchronization contexts as presented in this paper.

Ongoing research deals with the question if the minimal synchronization
contexts, though formally providing shared semantically rich artifacts for col-
laborative work, are sufficient in the sense of producing a shared understanding
in the involved user group - or if, on the other hand, there are certain situations
in which a full model sharing is more suitable than partial sharing with even
well-designed synchronization contexts and appropriate awareness mechanisms.

References

1. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User
Guide. Addison Wesley Professional, Boston, MA (USA), 1998.

2. P. P.-S. Chen. The entity-relationship model - toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

3. J. W. Forrester. Principles of Systems. Pegasus Communications, Waltham, MA
(USA), 1968.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements
of reusable Object-Oriented Software. Addison-Wesley Professional, Boston, MA
(USA), 1995.

5. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of ”seman-
tics”? Computer, 37(10):64–72, 2004.

6. D. H. Jonassen. Computers as Mindtools for Schools. Prentice Hall, Upper Saddle
River, NJ (USA), 2000.

7. M. Kuhn, H. U. Hoppe, A. Lingnau, and M. Fendrich. Evaluation of exploratory
approaches in learning probability based on computational modelling and simula-
tion. In Proceedings of the IADIS conference of Cognition and Exploratory Learning
in Digital Age (CELDA), pages 83–90, Lisbon, Portugal, 2004. IADIS Press.

8. S. Löhner, W. R. van Joolingen, and E. R. Savelsbergh. The effect of external rep-
resentation on constructing computer models of complex phenomena. Instructional
Science, 31:395–418, 2003.

9. J. D. Novak and D. B. Gowin. Learning How to Learn. Cambridge University
Press, Cambridge, England, 1984.

10. C. A. Petri. Kommunikation mit Automaten (communication with automata).
Schriften des Rheinisch-Westfälischen Instituts für Instrumentelle Mathematik,
Bonn, Germany, 1962.

11. N. Pinkwart. A plug-in architecture for graph based collaborative modeling sys-
tems. In Proceedings of the 11th International Conference on Artificial Intelligence
in Education (AI-ED), pages 535–536, Amsterdam, The Netherlands, 2003. IOS
Press.

12. D. D. Suthers and C. D. Hundhausen. An experimental study of the effects of rep-
resentational guidance on collaborative learning processes. Journal of the Learning
Sciences, 12(2):183–219, 2003.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 153 – 167, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Tailoring Infrastructures: Supporting Cooperative Work
with Configurable Email Filters

Volkmar Pipek1, Markus Won2, Roman Englert3, and Volker Wulf4

1 IISI - International Institute for Socio-Informatics, Heerstr. 148, 53111 Bonn
volkmar.pipek@iisi.de

Laboratory of Human-computer Interaction and Group Technology,
Department of Information Processing Science, University of Oulu Linnanmaa,

FIN-90570 Oulu, Finland
volkmar.pipek@tol.oulu.fi

2 Conet AG Theodor-Heuss-Allee 19, 53773 Hennef, Germany
mwon@conet.de

3 Deutsche Telekom Laboratories, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
roman.englert@telekom.de

4 Institute for Information Sciences, University of Siegen
Hölderlinstr. 3, 57068 Siegen, Germany

wulf@fb5.uni-siegen.de
Fraunhofer Institute for Applied Information Technology (FhG-FIT)

Schloss Birlinghoven, 53754 Sankt Augustin, Germany
volker.wulf@fit.fraunhofer.de

Abstract. In fragmented work settings like network organizations or virtual
organizations, monolithic approaches to implement support for collaboration
would require the actors involved to agree on the usage of the approach or tool
under consideration. As the autonomy of actors in these settings makes this hard
to achieve, we suggest an exploration and an increase in the end-user
tailorability of basic software infrastructures to enable even actors in theses
settings to tailor their collaboration support to their needs. An example for this
strategy is illustrated by using email as a basic groupware technology. We use
server-based email filters to improve the coordination of work processes and
increase group awareness in these settings, and focus on making it easy for end
users to understand and tailor the technology according to their needs. We use
and enhance concepts from the discussion on the "tailorability" of CSCW
systems (a visual filter composition language, a component-based architecture
and additional support for exploration and documentation) to implement and
evaluate our prototype.

1 Introduction

Computer support for cooperative work has not only become a key success factor for
organizations, but also the enabling technology for new forms of inter-organizational
cooperation and distributed work. Virtual organizations ([21];[16]) evolved as a new
form of joining core competencies of different actors (individuals and organizations)
to offer products and services beyond the skill and knowledge of the individual actors.

154 V. Pipek et al.

Comparing the technologies and tools used in virtual organizations to those in
traditional forms of organizations we find heterogeneity rather than homogeneity,
different tools, technologies and usages rather than a uniform, standardized
groupware platform. Cooperation usually takes place in a heterogeneous
infrastructure with some shared standards and basic technologies, but with many
different tools and usages (cf. [26],[29]). Like in other collaborative settings, there
still remains the necessity to be able to flexibly configure the infrastructure that is
collaboratively used according to new or changed work contexts [9]. This
characteristic of “Tailorability” has up to now mostly been explored for monolithic
CSCW tools or frameworks (e.g. [14], Wang and Haake 2000). But there is the
opportunity as well as the need to transfer tailorability to the domain of heterogeneous
software infrastructures. From a user's perspective on their collaboration
infrastructure as a whole, the tailoring support should mark "Group Tailoring Hot-
Spots" of the infrastructure.

As a consequence of the technological heterogeneity encountered in virtual
organizations, and a lack of motivation among actors to agree on shared standards, it
is often email that remains most common denominator of cooperation technology.
Important groupware functionality, like awareness support of workflows or
cooperation structures is then usually not available in these settings.

In our work we explore the idea of fostering group support in heterogeneous
software infrastructures by using server-side email filters to implement a lightweight
technological support for group collaboration in these settings. Using standard email
protocols and standard web technology we try to avoid interference with the
technological infrastructure of the users.

Rather than providing as much groupware functionality as possible we focused on
providing end-user friendly means to tailor the functionality to the given requirements
of a specific collaborative setting. Here, we applied and enhanced concepts known
from earlier research on tailoring and end-user development [23].

2 Related Work

2.1 Exploring Infrastructure Technology for Collaboration Support

There are various experiences to consider in the context of our work. A number of
publications have recently paid more attention to the fact that support of collaborative
work does not often operate on a stand alone basis, but rather is embedded in a
technological infrastructure ([3], [5], [8], [4], [23]).

Dourish ([3],[5]) elaborated on the problems that the ‘layeredness’ of
infrastructures, particularly the necessity to rely on lower layers of infrastructure
when constructing a tool infrastructure for collaborative work, causes in the context of
the development of collaborative systems. He also presented a concept of
collaboration support that intertwines with the file system of an operating system
instead of providing a separate tool [4]. Hanseth and Lundberg [8] addressed the role
of standards in software infrastructures. On the one hand, standards are necessary to
provide the compatibility among software tools, but on the other hand, standards also
define structures of in- and exclusion of information and resources in collaborative

Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters 155

systems. Pipek and Kahler [23] addressed similar issues, and discussed the problems
and opportunities for tailoring support by categorizing existing approaches to support
tailoring in CSCW tools.

2.2 Email Technology

There are several problems for getting optimal support from this technology. There is
no automatic support e.g. for different email categories (meeting request, note,
reminder, etc.) except using the subject line, send mails as CCs, etc. If there is such
functionality, it is usually client-based and therefore user-specific. So, some email
clients (i.e. Microsoft Outlook) allow for sending meeting arrangements, or they
create automatic answers. The disadvantage is that nobody knows which types of
email clients are used by others and how they are configured. Even though the overall
design of email clients has been discussed extensively lately [6], there has been not
much progress regarding email usage on the group level.

As described, many approaches for email-based group support rely on client-based
technologies. There are server-side email configuration systems as Procmail [7] but
they are very difficult to use for non-programmers since they are script-based. Users
need access to the server to configure such systems. To overcome this technological
obstacle, web interfaces for these filter system (e.g. Websieve) have been developed.
But these do not support a group-oriented approach (e.g. configurations always relate
to one user). In practice, often only simple support, e.g. automatic replies in case of
absence, is actually being used. Email-based tools for supporting collaboration have
been developed earlier (e.g. [13], [1]). Using filters to support group cooperation is a
new idea in that context. Using an email system with enhanced capabilities (group
support, etc.) has also never been explored with sufficient support for end users so far.

2.3 Support for Tailoring

Tailorability today is a well-accepted property of information and communication
systems designed to support group work. To fit the changing needs of group work in
organizations, the technological infrastructure (i.e. the software tools) has to be
flexible, and the flexibility has to be manageable for the users. The core question in
the tailoring discussion is what can be done to adapt tools and related work practice in
a use context to each other to support cooperative work in an optimal way (i.e. [9]). It
has also been discussed how these aspects change the basic design of the software
artifacts which are to be tailored.

The “architectural” perspective explored tailorability to develop concepts and
examples of very flexible software systems, which could be adapted to their use
scenarios ([12],[14]). Object-Orientation and Component-Based Systems [28] have
been explored to increase the flexibility of software artifacts designed to support
group work, other approaches addressed issues of analyzing, separating and
composing tailoring entities along the typical functionality of CSCW systems [14].

The “user-interface” perspective explored how tailorable software should present
itself to the tailors. Henderson and Kyng (1991) addressed the question, who the tailor
is, and distinguished three levels of tailoring (choosing between predefined
alternatives, constructing new artifacts from existing pieces, and reprogramming the

156 V. Pipek et al.

artifact) which require different levels of expertise regarding the supporting
technology.

While the general discussion on tailorability was associated with CSCW settings,
the discussion of these issues is now continued under the label of end-user
development and considering a wider scope of tools ([23],[25]).

2.4 Component-Based Tailorability

Component-based architectures are very common in modern software development,
and allow for better reusability of software components. Thus, software development
becomes faster (and cheaper) as well as the quality can be increased (by using tested
and well-known components). Not only do developers benefit by this technique, end-
users too avail themselves of it if component-based architectures are used to build
highly tailorable and manageable (for end-users) applications [15]. The most striking
advantages are:

• The component concept is easy to understand: An application or composition
consists of several components. Each of those components has its own function
and they all work together as one system. The communication between
components is done by sending messages them.

• The component approach allows for very powerful tailoring mechanisms:
Components can be chosen, they can be parameterized and they can be bound
together. Thus, the tailoring language only consists of three basic but very
powerful operations.

• The visualization and the tailoring operations (visual tailoring language) can be
figured out easily: Based on the first two points composing an application can be
done by “drawing” it [27].

If we regard an email filter (or a set of email filters working together) as a component-
based application then we can use the same techniques as mentioned above.

Several user studies have shown that those concepts can be easily understood by
end-users [30]. In several thinking-aloud tests [18] and different applications as well
as in a field study this was evaluated [30]. Here we found out that the critical point is
to understand the semantics of a component (a single one as well as a compound
component).

2.5 Tailoring Interfaces

Obviously, ordinary groupware users can not be expected to acquire programming
skills to be able to tailor an artifact accordingly. Several approaches, some inspired by
Nardi’s [17] work on end-user programming which aim at developing tailoring
environments which provide simple concepts and interfaces for end-user (i.e. [14].

There are several techniques that support using an application or learning its
functionality. As mentioned above, in our case we first have to provide simple ways
to understand single components. Furthermore, the workflow (or event flow) of a
composition has to be taken into account.

In general, looking at features that support learning of tailoring languages we can
draw on experiences concerning ordinary functions in single user applications.

Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters 157

Tailoring environments for users without programming skills should be designed
consistently with ordinary functionality (cf. [12];[17]).

Features that encourage learning of single user applications allow structuring,
describing, experimenting with and exemplifying the usage of the functionality (e.g.
[2]; [20]). These features are provided by programmers for the users.

In the following, we address several concepts mentioned above that can be used to
ease the learning of how to tailor or compose own filter as well as understand “pre”-
configured email-filters (i.e. filters composed and used by other users).

Experimenting and Exploration: Mackay [11] as well as Oppermann and Simm [19]
found that experimentation plays a major role in learning tailoring functions.
Nevertheless, Mackay [11] reports that the fear to break something is a barrier to
tailoring. Oppermann and Simm [19] found that the effects resulting from
experimenting with tailoring functions are difficult to perceive. “Undo function”,
“freezing points”, “experimental data”, and “neutral mode” are features which support
users in carrying out experiments with a system’s function. Especially in the context
of email or groupware in general experimental data can lower the barrier of tailoring
as testing of system changes can affect other users.

Exemplifying: Examples provided by other users are an important trigger to tailoring
[31]. Animation machines present a recorded sequence of interaction. Such animation
gives an example on how users can apply certain functions.

Describing: Mackay [11] found that the lack of documentation of respective functions
is a barrier to tailoring. Manuals and help texts are typical means to describe the
functionality of applications. A description that is provided by the software vendor
informs users about the state transition within the software system in which the
execution of a function results.

3 Pre-study: Using Email in Virtual Organizations

Virtual organizations usually comprise of actors with a high level of autonomy that
usually work in distributed setting for a limited time period to achieve a shared goal.
Email technology plays an important role in connecting members of virtual
organizations with each other [21]. More sophisticated and more powerful groupware
technologies usually are available, but only in the form of complex products that have
to be bought (costly), installed (time-consuming) and administrated (both).
Additionally, users have to be trained. Users in a virtual organization often are very
skeptical whether the benefit associated with the use of a groupware platform is worth
the investments necessary to install, maintain and learn about the groupware platform.
Thus, they usually fail to agree on one technology to use [29].

Email often remains as the only common technology to use for cooperation. In an
explorative user study we further explored how email is being used as a collaboration
technology in virtual teams. 22 interviewees from 7 organizations, working in
distributed work settings and using heterogeneous infrastructures were asked to
describe their current work contexts and how team members and external partners
collaborate. Some communication scenarios were discussed regarding the specific
problems that occur. We learned that usually the subject and the sender of an email

158 V. Pipek et al.

were used to identify the topic or the importance of an email. They should give a first
insight how server-based email filtering could ease collaboration. Finally the
participants were asked to outline their own scenarios. The resulting key scenarios for
email usage were:

• Meeting arrangements: Those emails often include more than two persons.
Answers are sent to all recipients then. This procedure requires many emails to be
sent and read.

• Replying to external inquiries: sometimes produced by an email form integrated in
a web site have to be answered. Sometimes these inquiries are archived (especially
the included addresses) and the answer has to be checked by a colleague.

• Exchanging documents: The most common way to exchange document is to send
them by email. Whereas working documents are only passed between team members,
camera-ready document have to be stored at a special place. Furthermore, at some
stage the team leader has to be informed about current work progress.

Those three scenarios show how email is used to coordinate work or collaboration.
In many cases copies are generated and sent to another team member (superior,
secretary, archive). Often this can be done semi-automatically depending on email
properties such as subject line, recipient, including attachment (i.e. name contains
“final version”), etc.

Looking at different types of emails we found that,

• recipients distinguished between personal mails (having one recipient) or
"information mails" (more recipients or addressed to a group email alias),

• recipients distinguished external and internal (colleagues) senders, and
• in general, most emails were sorted only by checking the subject line and the

sender’s name, not by reading the mail itself.

These observations informed the design of email-based group support. On the level
of collaboration, the following functions were assessed as helpful in a group scenario:
Group-related configurations: Relating filtering rules not only to a person but to a
group is an important step for establishing a shared notion of email-based
collaboration understanding of email usage.

Transparency of configurations: In collaborative settings it is important to
understand other individual's or other group's handling of the shared technology.
Occasionally transparency is also necessary to understand one self’s sorting schemes
in order to find an email.

Awareness support (e.g. [24]: If users operate with email-based concepts to
coordinate their work, a peripheral awareness of the email correspondence and the
flow of work can be useful. Emails can be automatically sent to other’s (interested
people) as carbon copy (CC) or they can be forwarded.

To bring our ideas into practice, we estimated appropriate means for configuration
and tailoring as more important than supporting more sophisticated concepts.

4 Concept and Architecture

Similar to Dourish’s [4] way of enhancing a file system, the basic idea to introduce
group functionality for collaboratively using email in fragmented work settings is to

Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters 159

use tailoring opportunities on ‘deeper’ layers of the shared infrastructure. The use of
server-side email filters has the advantage of implementing groupware functionality at
a location that can be shared by users even in heterogeneous infrastructures.
Additionally, we exploited ideas from the discussions on tailorability to guarantee the
system’s usability for end users.

4.1 Using a Component-Oriented Approach

Emails can be seen as messages that are passed between sender and receivers via a
chain of servers. Server-sided email filters can provide additional navigation
components (and connections between them) between individual mailboxes or mail
servers. As described above, traditionally filter systems are to be configured by
scripting languages, which are not suitable for most end users. We decided to describe
the filter system as a net of components. Aside from using component-based
visualization concepts, we also used component-based technology for transforming
our component-based filter descriptions into a script that can be understood by the
server (and vice versa). In using components on both levels, our system remains
scalable for further extensions.

4.2 Useful and Manageable Filter Criteria

Our filter concept uses the MIME email properties (cf. MIME standard) to process
emails. In addition to the MIME standard, it is possible to introduce new X-Tags
(self-defined mail attributes) that can be used for filtering. The prototype presented
here does not integrate all technical possibilities but aims at checking out which of
the possible properties of emails and the resulting filters are relevant. Most of the
scenarios we encountered in our pre-study can be automated with the help of filters
that analyze the standard mail tags in various ways. The prototype should integrate
the following kinds of filter techniques:

• Checking the sender’s name (on equality)
• Checking the subject (subject contains one or a set of words)
• Checking the recipient list.

As described above, additional filter types can be added easily (date, time stamp,
visited server, etc.). Regarding the possible actions that are being performed based on
filter results, our prototype needs to be able to

• generate copies of existing mails, and
• create notification mails (about what was send or received).

4.3 Architecture

Figure 1 shows an architectural view of our system. Client and Server are not
modified by our enhancements. With our component-based approach we only
changed the visualization of the filters, and not their functionality. There is also a
local storage for the component-based mail filters which are converted into the script-
based filter files every time the filter configuration changes. The filter administration
environment accesses the filter configuration storage and changes its content. It

160 V. Pipek et al.

merely serves as an editor of the filter configurations that are stored on the server. The
email client has access to the email server the same way as if there was no filter
system.

Email
Client

G
U

I

Filter
Admini-
stration

G
U

IFilters &
Configurations

Converter

Email
Server

Filter
Engine

Fig. 1. Architectural Model

4.4 The Tailoring Client

As described above, our component-based approach not only allows for very flexible
applications but is also easier to handle for non-programmers. Filters or little ‘filter
workflows’ can be designed as a component net. In the visual tailoring language, we
distinguish four kinds of components:

• Inbox (before filtering): This is where an email first arrives.
• Mailbox (after filtering): The final box the remaining emails fall into after all

filters have been executed properly.
• Several conditions: Conditions (i.e. “contains subject ‘Project A’?”) always can be

answered with a “yes” or a “no”. According to the answer something happens to
the mail.

• Created emails: Those are the actions of the email filter system. After a condition
is true a new email can be created. This can be the original message or a new
(automatically generated) message. As discussed above, the email filter system
also uses email as an awareness mechanism. For example, emails are created and
sent automatically if something happens that should be considered as important
(depending on the filter configuration).

All those components (switches with conditions, new email, etc.) are bound
together in a complex component and represent one filter configuration. At the tool’s
front end the filters are visualized so that changes to the composition can be done
easily by adding a component (drag it from a toolbox) and connecting it (drawing
lines between components).

To enable users to understand the whole system it is necessary to guarantee that all
filters within the group are public and can be looked at. For this reason it is possible
to also open other persons’ email filters. Another reason for looking at someone else’s
filter configurations is to learn and understand how filters can be used. Filters can be
used as examples that can be copied into the own filter configuration and customized.

Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters 161

Fig. 2. Screenshot, analyzing filter configuration

Exploration mechanisms have been added to ease the tailoring for end users.
Contrary to single-user applications like text processors, groupware services like
email have the specific problem that they usually can not be ‘tried out’ because other
users may be disrupted. Additionally, ‘learning by doing’, undo buttons, etc. are
mechanisms that do not work in an email-based system since emails once sent can not
be taken back.

Consequently, we had to integrate possibilities that ease learning and
understanding, as well as, to provide means for testing or exploring tailored filters.
Users can integrate annotations to whole filter nets as well as to parameterized
components and their meanings within a filter. For the description of the exploration
mode, see also the descriptions below.

5 Using the Prototype

First, we illustrate an example of its application, and explain the aspects of our
prototype. Figure 2 depicts a screenshot of the filter administration tool mentioned in
figure 1. Email filters are connected to processes (or ‘workflows’). Normally the
inbox of the filter system is on the top of the screen and marks the beginning of the
process. Arrows mark possible directions emails can take according to special
conditions. In figure 2 we see a filter which first doubles incoming mails. After that
“the left one” is checked if it belongs to “Project A”. If not so (red), it is forwarded to
the typing pool (secretary). Then the “right mail” is checked on belonging to “Project
B”. In this case it is forwarded to “Walter”. Additionally, it is put into the mail
client’s inbox. Changing the configuration can be done easily by deleting the arrows

162 V. Pipek et al.

or adding filter components (see toolbox on the right side) using ‘drag and drop’
functions. The configuration of the switches can be done by clicking on it and editing
the conditions. Several filter properties are also visualized. Those conditions are very
simple boolean expressions as they have to be understood and expressed by the users
themselves (i.e. Recipient = walter@noorg.de or Subject CONTAINS “important”).
Combinations of expressions are allowed (using AND). Furthermore, every
expression can be described in own words (comment) to ease understanding.

5.1 Additional Tailoring Support

To provide the necessary end-user orientation we integrated three mechanisms:

• Tool tips: Explanations are given by textual tool tips to each filter element. For
example, as shown in figure 2, the condition “belongs the mail to Project A” is
described as “Project A?”. So, inexperienced users can understand different filters
and learn their functionality only by reading the annotations (some of which are
generated by the system, some enhanced by the users themselves).

• Visualizing other users’ filters: Other group members’ filters can also be loaded
into the filter administration tool, although they can not be changed. This eases the
understanding how filters can be used efficiently and how they work. For privacy
reasons, of course, the emails themselves remain invisible.

• Exploration mode: Users can easily check the configured filter with a test mail.
The user then can take an existing mail (or a newly generated one), drag the email
from the email client, and drop it onto the inbox of the filter administration client.
From this stage, the mail is passed on sequentially through the filter. Newly
generated mails (notifications) are visualized the moment they enter the system. If
the email is forwarded to another user and other filters are being activated, a
second filter window appears. So the user (filter configurator) can test the filter
settings with “real” emails without actually sending them through the mail system,
and therefore without disturbing other users.

All three techniques ease the understanding of the system. More experienced users
learn the functionality of the current filter settings by analyzing the graphical structure
of the filter and the additional text information. More complex settings – especially
several users’ filter settings that have to be taken into account for understanding the
group’s joint working space can be learned by exploring the system’s functionality
using emails with the according properties (tags, headers, etc.).

5.2 Learning by Copy and Tailor

As described above the transparency mode can be used to learn about other users’
filter settings. If such filters are displayed they can be stored as filter components and
integrated into own filter settings. By using this feature less experienced users can
tailor their own filter settings by simply copying and adapting existing ones.

Furthermore, local administrators or super users can use this feature to design filter
components for regular collaboration scenarios within their organization.

The quality of copied filter settings here can only be assured by organizational
rules. For instance, administrators may store predefined filters at a special directory. If

Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters 163

users include some of those filter settings they know that they were designed by
experts and have been tested.

5.3 Awareness and Transparency Functionality

Our email-based approach provides not only for awareness support, but also static
transparency of others' filter configurations.

The filter techniques allow establishing awareness services during normal use of
email. Notification emails can be generated and send to colleagues if email with
certain properties are being sent or received. For example, emails of important
customers (identified by "sender") will be doubled and notification mails will be sent
to group members.

By using the exploration mode that allow for investigating of all the users’ email
filter settings, work processes can be understood more easily. This is particularly
important in virtual organizations that usually have no centralized organizational
structure or transparent processes that could ease cooperation. Both awareness
concepts allow for more transparency within the distributed organization. In the first
case, the prototype was built without taking into account any privacy issues. Thus, all
users within the group are allowed to browse through all email filters which leads to
maximum transparency and learning effect. In the future, privacy issues have to be
taken into account more seriously as filter settings may be a sensitive part of self-
organization (for individuals as well as to groups).

5.4 Integration into Existing Infrastructures

The main goal of our approach was to allow for enhanced collaboration scenarios in
virtual organizations where not all the members use the same technical infrastructure.
Thus, what we needed was a technological basis that is available for all potential
members without much technical overhead, and which allows greater end-user
management flexibility. Email servers nowadays are very easy to handle and to
administer (i.e. integration of new users, connecting to the email clients) and there are
many providers who offer own email servers on their machines. Most of them are able
to interpret script-based filter languages like procmail. This ‘deeper’ infrastructural
level provides an access point for group-oriented functionality.

In the implementation of our prototype, the visualization and configuration of those
filters can be done by using our filter administration client which is completely Java-
based and therefore executable on many different platforms. The configuration files
(XML) have to be stored in a highly accessible storage location.1 This could be a web
server for example. Simple access rights ensure that only the group members are
allowed to read and change the contents. Using these technologies, that are the
common denominator in today’s internet-based infrastructures, it is possible to embed
our concept into almost any given work infrastructure.

1 The “filters and configurations” server is a centralized one. Instead of, different mail servers

can be accessed by it.

164 V. Pipek et al.

On the filter server all email accounts of all participating users have to be
accessible as the account information is needed to transfer the visually built filter
configuration to the email server.2

5.5 User Experiences

To get some information about the feasibility of our concept in practice, we tested our
prototype regarding its usability with a small number of users. Our evaluation was
based on heuristic evaluation [18]. Three types of persons with different experiences
and technical background were interviewed: “normal” users, professional users with
programming skills but no administration experience, and one administrator. All of
them are working in the field of IT consulting. Thus, they all have been working in
virtualized and distributed working scenarios for a long time. First, they were
presented with the idea of the software, and later the functionality was presented.
After this step, they were asked to answer several questions concerning existing filter
configuration. Finally, they were asked to configure own filters. The main results
were:

• Exploration mode supports easy and exemplified learning: During the phase in
which the interviewees should explain existing filter configurations the two more
experienced users interpreted the annotations well, whereas the less experienced
one used the exploration mode and generated different mails to understand the
functionality of the filter.

• Building by exploration: In the third phase, the test persons had to configure their
own filters. Both the programmer and the administrator designed their filters
quickly by ‘dragging and dropping’ the filter components and binding them. The
third person interactively developed parts of the filter, tested them by using the
exploration mode and repeatedly changed parameters within the components.
Interestingly the resulting filters differed in design but not in functionality.

The graphical tool was very helpful even for experienced users. Especially when
filter configurations become more complex the graphical view is easier to understand
compared to textual descriptions of filters.

Especially less experienced users felt very comfortable when using the exploration
mode. It helped the understanding of the system’s behavior. The possibility to
generate emails using the familiar email client and using them for testing the
configuration increases the understanding not only of the filter system but also of
email messaging in general.

6 Conclusions

The new forms of organization and collaboration like virtual or networked
organizations produce an increased the level of fragmentation of work settings. To
also support these settings with groupware technology, it becomes necessary to
explore deeper levels of the technological infrastructure at hand, and those levels that

2 In fact, the email server then receives procmail scripts which are based on the email

configuration.

Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters 165

represent the most common denominator of the technologies used by the potential
collaborators. Dourish [4] described such an approach at the level of file systems. We
have now described such an approach using standard email technology to provide
groupware functionality (awareness support, modeling of small workflows, additional
notification services). To make these infrastructures adaptable for end users, we not
only have to find "tailoring hot spots" within the shared technology and exploit them
for group tailoring support, but we also have to provide the flexibility offered by the
software infrastructure in a way that makes it manageable by end users. Therefore, a
significant amount of our conceptual work went into the application of tailoring
support concepts from standard CSCW tools for these ‘infrastructural’ technologies of
email and web servers. In a small evaluation study, we were able to show the
suitability of our concept for end users. Still, there are many open questions around
this field of research. Following the use and the further development of email filters
over time, especially in those cases where the mutual filter settings are known by all
users of a group. The installation of an open community support concept around the
configuration of the filters, as e.g. described in the concept of the ‘Use Discourse
Environments’ by Pipek [22] can help foster the appropriation of the technology on a
social level. That way, in the long run, it would be possible to find collaboration
patters based on email communication that could then be supported more specifically.
Elaborating on earlier work on semi-structured messages [14], a decentralized and
standardized support of message filtering could be a powerful infrastructure for the
information and knowledge management of the enterprises of the future.

Acknowledgements

We would like to thank Radhakrishnan Subramaniam, Matthias Betz, and the
anonymous CRIWG reviewers for their comments on earlier versions of the paper.
The research presented here has been partially funded by the German Ministery for
Education and Research within the ‘Olvio’ project under the reference number
01HG8890.

References

1. Camino, B. M., Milewski, A. E., Millen, D. R., & Smith, T. M. (1998). Replying to email
with structured responses. Int. Journal on Human-Computer Studies, 48, pp. 763-776.

2. Caroll, J. M.: “Five Gambits for the advisory Interfacs Dilemma”, in: Frese, M., Ulich, E.,
and Dzida, W. (eds.), Psychological Issues of Human Computer Interaction in the Work
Place, Amsterdam, 1987, pp. 257-274.

3. Dourish, P. Software Infrastructures. in Beaudouin-Lafon, M. ed. Computer Supported Co-
operative Work, John Wiley & Sons, 1999, pp. 195-219.

4. Dourish, P. The Appropriation of Interactive Technologies: Some Lessons from Placeless
Documents. Computer Supported Cooperative Work (CSCW) - The Journal of
Collaborative Computing, 12 (4). 2003, pp. 465-490.

5. Dourish, P. and Edwards, W.K. A tale of two toolkits: Relating Infrastructure and Use in
Flexible CSCW Toolkits. Computer-Supported Cooperative Work (CSCW), 9 (1), 2000,
pp. 33-51.

166 V. Pipek et al.

6. Gruen, D., Rohall, S.L., Minassian, S., Kerr, B., Moody, P., Stachel, B., Wattenberg, M.
and Wilcox, E., Lessons from the reMail prototypes. in Proceedings of the 2004 ACM
conference on Computer supported cooperative work, (Chicago, Illinois, USA, 2004),
ACM Press, pp. 152-161.

7. Hampton, C.A.: “Getting Started With Procmail”,
http://www.spambouncer.org/proctut.shtml, 8.1.2002.

8. Hanseth, O. and Lundberg, N. Designing Work Oriented Infrastructures. Computer
Supported Cooperative Work: The Journal of Collaborative Computing, 10 (3-4), 2001.
Pp. 347–372.

9. Henderson, A. and Kyng M.: “There's No Place Like Home. Continuing Design in Use”,
in: Design at Work, Lawrence Erlbaum Associates, Publishers, 1991, pp. 219-240.

10. Lieberman, H., Paternó, F. and Wulf, V. (eds.). End User Development. Kluwer,
Dordrecht, NL, in press.

11. Mackay, W. E.: “Users and customizable Software: A Co-Adaptive Phenomenon”, MIT,
Boston (MA), PhD Thesis, 1990.

12. MacLean, A., Carter, K., Lövstrand, L., and Moran, T., “User-tailorable Systems: Pressing
the Issue with Buttons”, in: Proceedings of the Conference on Computer Human
Interaction (CHI '90), April 1-5, Seattle (Washington), ACM-Press, New York, 1990, pp.
175-182.

13. Malone, T.W., Grant, K.R., Lai, K.-Y., Rao, R. and Rosenblitt, D., Semistructured
Messages are Surprisingly Useful for Computer-Supported Coordination. in Proceedings
of CSCW 88, (1988), Morgan-Kaufmann, pp. 311-334.

14. Malone, T.W., Lai, K.-Y. and Fry, C., Experiments with Oval: A Radically Tailorable
Tool for Cooperative Work. in Int. Conference on CSCW (CSCW'92), Toronto, Canada,
1992, ACM Press, pp.289-297

15. Morch, A., Stevens, G., Won, M., Klann, M., Dittrich, Y. and Wulf, V. Component-based
technologies for end-user development. Communications of the ACM, 47 (9). 2004, pp.
59-62.

16. Mowshowitz, A: Virtual Organization. In: Communications of the ACM, 40-9, 1997, pp.
30-37

17. Nardi, B. A., “A Small Matter of Programming - Perspectives on end-user computing”,
MIT-Press, Cambridge et al., 1993.

18. Nielsen, J.: Evaluating the Thinking-Aloud Technique for Use by Computer Scientits. In:
Hortson, H.R., Hix, D. (Hrsg.): Advances in Human Computer Interaction, Vol. 3, 1992,
pp. 69-82. Nielsen, J.: Usability Engineering. AP Professional, New York, 1993.

19. Oppermann, R. and Simm, H., “Adaptability: User-Initiated Individualization”, in:
Oppermann, R. (ed.): Adaptive User Support – Ergonomic Design of Manually and
Automatically Adaptable Software, Lawrence Erlbaum Ass., Hillsdale, New Jersey, 1994.

20. Paul, H., “Exploratives Agieren”, Peter Lang, Frankfurt/M (Germany) 1994.
21. Picot, A., Reichwald, R., Wigant, R.: “Die grenzenlose Unternehmung - Information,

Organisation und Management“, 3. Aufl., Wiesbaden, Germany, Gabler, 1998.
22. Pipek, V., From Tailoring to Appropriation Support: Negotiating Groupware Usage,

Faculty of Science, Department of Information Processing Science (ACTA
UNIVERSITATIS OULUENSIS A 430), University of Oulu, Oulu, Finland, 2005, 246 p.

23. Pipek, V. and Kahler, H. Supporting Collaborative Tailoring. in Lieberman, H., Paterno, F.
and Wulf, V. eds. End-User Development, Kluwer, Dordrecht, NL, 2005, to be published.

24. Sandor, O., Bogdan, C. and Bowers, J., Aether: An Awareness Engine For CSCW. in 5th
European Conf. on CSCW (ECSCW'97), Kluwer,, 1997, pp. 221-236.

Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters 167

25. Sutcliffe, A. and Mehandjiev, N. Special Issue on End-user development: tools that
empower users to create their own software solutions. Communications of the ACM, 47
(9), 2004.

26. Rittenbruch, M., Kahler, H. and Cremers, A.B., Supporting cooperation in a virtual
organization. in Proceedings of the international conference on Information systems,
(Helsinki, Finland, 1998), Association for Information Systems, 1998, pp. 30-38.

27. Stiemerling, O., Component-based tailorability, Ph.D.-Thesis, Institute for Computer
Science III, University of Bonn (Germany), 2000.

28. Stiemerling, O. and Cremers, A.B. The EVOLVE Project: Component-Based Tailorability
for CSCW Applications. AI & Society, 14. 2000, pp. 120-141.

29. Törpel, B., Pipek, V. and Rittenbruch, M. Creating Heterogeneity - Evolving Use of
Groupware in a Network of Freelancers. Special Issue of the Int. Journal on CSCW on
"Evolving Use of Groupware", 12 (4). pp. 381-409

30. Wulf, V.: “Let's see your Search-Tool! – On the Collaborative Use of Tailored Artifacts”,
in: Proceedings of Group ’99, ACM Press, New York, 1999, pp. 50-60.

31. Wulf, V. and Golombek, B. Direct Activation: A Concept to Encourage Tailoring
Activities. Behaviour & Information Technology, 20 (4), 2001, pp. 249-263.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 168 – 183, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Collaborative Framework for Unexpected
Exception Handling

Hernâni Mourão1,* and Pedro Antunes2

1 Escola Superior de Ciências Empresariais, Instituto Politécnico de Setúbal,
Campus do IPS – Estefanilha, 2914-503 Setúbal, Portugal, and

LASIGE (Laboratory of Large Scale Information Systems)
hmourao@esce.ips.pt

2 Faculdade de Ciências, Universidade de Lisboa, Departamento de Informática,
Campo Grande – Edifício C5, 1749-016 Lisboa, Portugal, and

LASIGE (Laboratory of Large Scale Information Systems)
paa@di.fc.ul.pt

Abstract. This paper proposes a collaborative framework handling unexpected
exceptions in Workflow Management Systems (WfMS). Unexpected excep-
tions correspond to unpredicted situations for which the system can not suggest
any solutions. We introduce the notion that exception recovery is a collabora-
tive problem solving activity that should be addressed through an intertwined
play between several actors performing two types of tasks: (1) diagnosing
situations; and (2) planning recovery actions. We propose a set of dimensions to
classify the exceptional situations and their relations to recovery strategies. We
also discuss the importance of monitoring recovery actions within the scope of
diagnosis tasks. The proposed solution is implemented through a dedicated
workflow.

1 Introduction

The work processes carried out by organizations in their daily operations have been
identified to belong to a continuum ranging from totally unstructured to completely
structured [33]. The majority of the available organizational information systems fall
close to both sides of the spectrum boundaries [33]. In particular, traditional WfMS
fall into the highly structured boundary, usually supporting organizational processes
through the execution of work models. In the context of Schmidt’s work [32], work
models play the role of scripts in formal organizational structures and have a norma-
tive engagement. Closer to the other end of the spectrum limits, Suchman [35] pro-
poses the notion of maps, which position and guide actors in a space of available
actions, providing environmental information necessary to decision making but
avoiding a normative trait.

* The author is deeply grateful to Ulm’s University group for their friendship and scientific

support during his staying. Their sharing of ideas and great field experience on Workflows
was very important to this work.

 A Collaborative Framework for Unexpected Exception Handling 169

To support the various organizational needs, WfMS should cope with the whole
spectrum of structured and unstructured activities. This requirement has been
identified by Ellis and Nutt [18], when they realize that WfMS must be flexible to
succeed. Also, Abbot and Sarin [1], based on empirical evidence, claim it is necessary
to integrate procedural and nonprocedural work in WfMS. They define nonprocedural
work as “unchoreographed interactions between people.”

In the WfMS community nonprocedural work has been designated “exception
handling,” encompassing the set of actions aiming to react to a kind of event that is
out of the scope of the work model. Exceptions either can not be predicted during the
design phase or, although being predictable, are deliberately excluded from the work
model to reduce complexity [6; 10; 14; 24; 31]. The Eder and Liebhart’s [14]
classification of expected and unexpected exceptions has been widely accepted, since
it enables a division between the exceptions that can be predicted in the design phase
from those that can not. In our work, we advocate a novel approach to exception
classification, assuming a continuum from expected to unexpected exceptions.

This paper is structured in the following way. We start by revising the notion of
completeness in an exception handling WfMS. Then, we present a framework to deal
with the above mentioned dichotomy: maintain model-based work whenever possible
and change to a kind of map guidance whenever the scope is outside the limits under
which the work models were designed [2]. A set of guidance mechanisms is proposed
to support users dealing with unexpected exceptions, delivered in the form of
contextual information about the affected processes. As Bernstein [5] states, emergent
actions must be sustained by context information as actors dealing with these
environments become overloaded with information.

Our solution is based on a previous developed exception handling workflow [25].
In the present work we expand the exception handling workflow with three functions
[31]: detection, diagnosis, and recovery. Most importantly, the recovery phase is now
intertwined with the diagnosis phase, as we came to realize that a proper diagnosis is
an iterative process requiring harvesting contextual information and collaboration
between users.

We also classify exception handling strategies and relate them with exceptional
situations. Finally, we present and discuss the implementation details, illustrate the
framework usage with an example, and finish with the conclusions and future work.

2 Revising the Completeness Requirement

To be complete, an exception handling system should consent users to carry out
recovery activities without restrictions, i.e., the flexibility of the exception handling
system should be on par with the flexibility actors have on their daily activities when
working without system control. Several impacts of this definition should be taken
into consideration.

This definition is based on the notion that people tend to solve their problems with
all the available means. If any system restrictions are imposed to the users’ primary
objective of reaching a solution, they will overcome the system [21; 34].

The consequences of this open perspective on WfMS are profound. The common
restrictions to ad hoc model changes, based on structural and dynamic properties,

170 H. Mourão and P. Antunes

must therefore be relaxed. We believe that these restrictions are only applicable if one
wants to keep the execution under the specified work models. However, if the
objective is, for instance, to graciously abort a workflow instance, no consistency
check is necessary. Even further, if the user decides to implement a recovery action
that deliberately inserts structural conflicts in the work model, s/he should be advised
on potential problems but allowed to carry out that action.

On the other hand, users should not be restricted to the services provided by the
exception handling system, since they will use everything needed to overcome the
situation. The challenge is to implement a comprehensive set of services that may
reduce the user’s needs to handle exceptions outside the system scope. The
framework described in this paper integrates such services while being open to the
organizational environment. Thus, some exception handling activities will be partially
outside the WfMS scope. The framework integrates environmental information about
external activities, thus guiding actors in the course of actions, but will not assume
control of those activities. These environmental monitoring tasks collect information
necessary to plan the recovery actions or monitor the evolution of actions
implemented out of the framework’s scope.

3 Related Work and Scope of the Framework

The main appointed reasons for the lack of flexibility in current WfMS are: 1)
complex work models where only predictable events are foreseen (expected
exceptions, see below) [6; 7; 11]; 2) inability applying model changes to already
running instances [17; 28; 36]; 3) difficulties applying ad hoc changes to cope with
very small model variations [28; 36]; 4) tight coupling between modeling and
enactment [19; 23]; and 5) formal models currently adopted to represent work are
inadequate to flexibility support [13].

Various approaches to flexibility can be found in the literature, as different authors
understand differently the properties a WfMS should exhibit to effectively deal with
office work. We identify two parallel research streams [20]: meta-model and
open-point. Meta-model approaches take into major consideration structural and
dynamic constraints to model adaptations, while open-point approaches rely on the
users’ abilities to assure that no inconsistencies are inserted in the system.

The meta-model approaches fundamentally address expected exceptions, coded in
special constructs and invoked whenever a predefined exceptional situation is
detected [6; 10; 11; 14] – e.g., Event Condition Action (ECA) rules. Several
techniques, such as exception mining [10; 22], case base reasoning [24],
conversational case base reasoning [37], and knowledge bases [12] have been
proposed to expand the system flexibility handling exceptions. If we consider a
continuum from expected exceptions to completely unexpected exceptions, all these
systems handle events falling close to expected exceptions limits of the spectrum.

On the meta-model approaches to address unexpected exceptions, we find several
solutions [7; 17; 26; 36]. The most important distinction from the previous set, is that
these solutions support dynamic changes and ad hoc interventions.

Regarding the open-point approaches in more detail, we find interactive enactment
[23] and flexible enactment [19]. These approaches assume work models are

 A Collaborative Framework for Unexpected Exception Handling 171

incompletely specified, allowing users to interactively adapt them, e.g., inserting
tasks. This increases the degree of freedom on the user side to cope with deviations
between the work models and the real world, although in a more structured way than
a totally open-point intervention would afford. In any case, users will be able to insert
unidentified inconsistencies, and possibly put the WfMS at risk [20], considering that
no dynamic or structural checks are made.

Like Agostini and De Michelis [2], we agree with both research streams delineated
above and posit that a WfMS should offer both advantages: being able to work under
model guidance and adopt an open-point behavior when model guidance is not
applicable. However, after open-point operations, the system should support users
bringing instances back to model control, while identifying potential flow and data
inconsistencies. A complete discussion of the mechanisms necessary to bring the
system under model control is out of the scope of the present paper. It is though
important to mention that these mechanisms are highly constrained by the meta-model
assumptions. We point to [29] on this issue.

Also studying the integration between meta-model and open-point approaches,
Bernstein [5] proposes a stepwise solution with four stages. The handling activities
incrementally progress from totally unspecified to totally specified control. Contrary
to this solution, which relies on AI techniques to support the incremental steps, our
approach relies on user collaboration.

In summary, our main focus is on exceptions that can not be handled in an
automatic way, i.e., can not be dealt by any of the solutions enlarging the original
notion of expected exceptions (thus moving close to the unexpected limit). We
assume that users should be able to flexibly move the system behavior from totally
defined to unstructured processes, where open-point operations are carried out while
meta-model assumptions are used to check system coherence. This will enable the
adoption of the best strategy to the exceptional situation and facilitates the
identification of user inserted inconsistencies. Finally, the system should also support
the user to identify the necessary actions to bring the system back to a coherent state.

4 Exceptions Handling Framework

We distinguish three functions in exception handling [12; 31]:

• exception detection
• situation diagnosis
• exception recovery actions

Exception detection has been extensively studied in previous works [6; 10; 11; 31;
25]. Detection can be manual or automatic. A detailed description of the automatic
detection techniques is out of the scope of this paper as it is focused on user
perspective. We assume that an exception detection component is tightly integrated in
the workflow engine, covering the most common situations, such as data, workflow,
and temporal events, non-compliance events and application events. Later in this
section we will discuss the integration of the detection component. We distinguish
manual and automatic detection as they behave differently from user’s perspective.

172 H. Mourão and P. Antunes

Fig. 1. Exception Handling Cycle

We will rather focus on the other two functions. In our framework we advocate an
intertwined play between diagnosis and recovery until the exception is resolved. That
is to say, the diagnosis is not considered to be complete on the first approach but
rather, through an iterative process where different actors may collaboratively
contribute to the solution. We should also stress that both the exceptional situation
and perception of the situation may change along this iterative process, as new
information is made available. As an example concerning a clinical process, a doctor
may decide to insert a new task to collect information on the patient’s status and
display this information to everyone involved. Also, if the clinical conditions of the
patient change, the diagnosis regarding the exceptional situation may also change and
some new objectives and tasks may arise.

After diagnosis, users carry out recovery actions. The open nature of the
framework indicates that the recovery actions do not always run in the inner system
context, and thus some linking mechanism is necessary to bring environmental
information to the system. This issue will be addressed later in more detail.

Besides the detection, diagnosis and recovery functions, we identify a new function
addressing monitoring actions necessary to control the progress of the whole
exception handling process. These monitoring actions allow users to collect up to date
information related to running instances and tasks. Considering again the open nature
of the framework, these monitoring actions may also bring environmental information
to the system, e.g., establishing a link to a web site with traffic information may help
solving the exception of a truck being stuck on a traffic jam. In other cases monitoring
actions may require more sophisticated links to external services, e.g., invoking an
existing tool to calculate the minimum impact of a machine break down in a lot
manufacturing facility. As shown in Figure 1, the exception handling cycle considers
monitoring actions running in parallel with recovery actions.

Ellis and Keddara [16] state that a process change is itself a process that can be
modeled. Therefore, like Sadik [31], we claim that it is better to cope with unexpected
exceptions in work models using a work model. In our framework, the occurrence of
an exception starts an exception handling workflow governed according to the
exception handling cycle. The workflow is described in the Implementation section.

Figure 2 illustrates the three different levels of the exception handling framework.
Dashed lines represent information flows whereas uninterrupted lines represent

 A Collaborative Framework for Unexpected Exception Handling 173

control flows. We illustrate the WfMS at the bottom level, including the engine and
all running tasks. The mid level represents the system components supporting the
exception handling activities.

The top level concerns the users, focused on the two main exception handling
functions: diagnosis and recovery/monitoring. The diagnosis and recovery/monitoring
functions are carried out by the involved actors with support from the components
available in the level below.

Our discussion of completeness in this context requires users not be restricted to
the system. Therefore, the “External facilities” component shown in Figure 2
represents what is not under control of the exception handling workflow.
We differentiate two types of activities carried out by the “External facilities”: 1)
information gathering, collaboration and decision making; and 2) recovery actions.
The former group is related to external communication, coordination, collaboration
and decision making tools (e.g., meetings, telephone conversations, or operations
research techniques). The later group addresses the external recovery actions
necessary to resolve the exception. It is our aim that, for any activity executed outside
the scope of the exception handling workflow, some environmental information is
inserted in the system for monitoring purposes.

The system interfaces are also identified in Figure 2. Interface 1 (Int. 1) interfaces
with the WfMS, while interface 2 (Int. 2 and Int 2’) interfaces with “External
facilities” and implements manual exception signaling. Interface 2 is split to maintain
simplicity. Interface 1 is used to collect information about the WfMS status, to
implement low level recovery actions (launch/suspend tasks, etc), and to signal
automatically detected exceptions. Through the connection from interface 2 to
“External facilities” environmental information about the operations carried outside
the framework’s scope is collected.

Fig. 2. Operational levels of the exception handling framework

174 H. Mourão and P. Antunes

The components Exception Description, WF Interventions, and Collaboration
support will be explained later in the Implementation section. Exception detection is
also represented in the figure. Manual detected exceptions are inserted by an operator
and represented by the uninterrupted line connected to interface 2’ on the top left side
whereas automatically detection is implemented by the “Automatic exception
detection” component located close to the engine. The component uses interface 1 to
signal the events to the framework and is located close to the engine because it shares
the organization workflow scope.

4.1 Diagnosis

The diagnosis process is mostly dependent on a detailed and accurate assessment of
the exceptional event. Using previous classifications [8; 9; 30] and some new added
characteristics, we classify exceptional situations using the orthogonal dimensions:

1. Scope – process specific when only a small set of instances is affected; or cross
specific when a large set or different sets of instances are affected. At least one
instance must always be associated to the exception;

2. Detection – automatic if the exception is automatically detected by the system, or
manually if the exception is manually triggered;

3. Event type – data events related to violation of data rules; temporal events when
a predefined timestamp occurs; workflow events identify special situations at the
beginning or ending of tasks or processes, e.g., infinite loops; external events are
notified by agents or applications external to the WfMS. The assessment of the
event type is mandatory, because it directly impacts the handling phase;

4. Impact to organizational goals – high, if the particular situation has an important
effect on the overall organizational goals; medium, if not critical; and low, when
the organizational goals are not a concern;

5. Organizational impact – employee, when only a limited number of employees in
the same department are affected by the exception; group, when more than one
department is affected; and organizational, when the overall organization is
affected. A responsible person must always be associated to the exception;

6. Difference to the organizational rules – established exceptions occur when rules
exist in the organization to handle the event but the right ones cannot be found;
otherwise exceptions occur when the organization has rules to handle the normal
event but they do not apply completely to the particular case; and true exceptions
occur when the organization has no rules to handle the event;

7. Complexity of the solution – easy, when the optimal solution can be easily
obtained in an acceptable time; hard, when the optimal solution is not obtainable
within an acceptable time. In this dimension, complexity is not defined as the
overall complexity of the handling procedure, but rather an estimation of the
possibility to define a cost function based on the available data. Whenever such a
function exists, this dimension provides an estimate of the complexity degree to
calculate the optimal solution;

8. Reaction time – quick, when the reaction to the exception must be as fast as
possible; relaxed, when the reaction time is not too critical but some decisions
must be taken within a time frame imposed by the instance(s); long, when the
reaction time is not critical. This information is mandatory;

 A Collaborative Framework for Unexpected Exception Handling 175

9. Time frame to achieve solution – quick, when the situation is expected to be
resolved in few working units, normally minutes or hours; relaxed, when the time
frame is more relaxed, although being a parameter to be taken into consideration,
normally measured in working days; and long when time is not a critical issue.

Even though some estimates in these dimensions might be available when the
event is detected, they can be redefined by users as more information is collected. The
old values are kept to maintain an exception history. On the other hand, only the
dimensions affected instances, responsible person (organizational impact), event type,
and reaction time are mandatory. The user must only insert the most relevant
information for the particular situation. This will release the user from inserting
information not relevant to handle the concrete situation.

4.2 Recovery

We identified the following dimensions to classify recovery processes:

1. Objective of the intervention – further division presented below;
2. Required type of collaboration – synchronous and asynchronous;
3. Required collaboration level – one person solves the problem; several persons

solve the situation in an asynchronous coordinated mode; and several persons solve
the situation in a synchronous collaborative mode;

4. External monitoring requirements – there is either enough information to achieve
the best solution or additional information must be collected from the environment;

5. Tools to determine the best solution – the solution does not require external
decision aids, or there is a need of advanced support to achieve the best solution.

This information is associated to every exception raised. It must be emphasized
that, likewise the information necessary to classify the situation, these values may
change over time as more information about the exception is obtained. An exception
history is kept in the system to be consulted by the involved users.

The objective of the intervention is further divided into [3; 10; 15; 27; 31]:

• Abort – further divided in: hard, compensate some tasks, and compensate all tasks;
• Decrease completion time to meet deadline;
• Recover from a system failure condition and replace the system in automatic mode;
• Recover from a task failure and place the system back in automatic mode;
• Recover to achieve the lowest penalty possible, i.e., the exception already impacted

negatively on the organizational goals and the objective is to minimize the impact;
• Jump forward to a task in the work model;
• Repeat a previous task that was not executed in the desired way;
• Jump backwards in the work model and compensate some already executed tasks;
• Delay this task. This objective can be useful to release some resources necessary to

increase the execution time of another process/instance;
• React to environmental changes. This normally requires a process change.

This classification affords linking the recovery process with a specific set of
recovery tasks available at the system level. The required type of collaboration
expresses how the collaboration support component will interconnect the persons

176 H. Mourão and P. Antunes

involved in the recovery process. We differentiate between two types of
collaboration: synchronous and asynchronous. In synchronous collaboration all of the
persons involved intervene at the same time, while in asynchronous collaboration the
persons involved are not engaged in the process at the same time.

Concerning the required collaboration level, one as to be aware of concurrent
changes made to work models. When ad hoc changes are applied in an asynchronous
coordinated mode, every change is seen as an independent change and the resulting
work model results from the composition of previous changes. Therefore, the
structural and dynamic checks are made on the instance with respect to this new
model. However, in the case of concurrent ad hoc changes carried in an asynchronous
collaborative mode, the work of Rinderle [28] must be taken into consideration
because actions carried out by different users without any agreement –
asynchronously – may conflict (if they overlap on the same part of the model).

External monitoring requirements specify if environmental information is
necessary to resolve the exception. The need to collect information within the system
has already been identified by Basil et al [4]. In this approach we suggest that the
recovery process may as well require collecting environmental information, from
outside the system, e.g. generate an interface to display traffic information because a
truck is stuck on a traffic jam.

The item tools to calculate the best solution identifies any additional tools
necessary to calculate the best recovery solution. This affords linking the framework
with external tools supporting the decision process.

5 Relationships Between Diagnosis and Recovery

Some relationships can be established empirically between the diagnosis of the
situation and recovery strategies. Although some field trials should be carried out to
validate the relations they seem very intuitive and easy to explain. These relations can
be used as information to feed a decision support system that helps users on the
selection of the most appropriate strategy given a concrete scenario.

We start by identifying the dimensions of the recovery strategy that do not depend
on the classification; and the dimensions of the classification that do not have a clear
impact on the recovery strategy. Then, the remaining relationships and respective
consequences are explored.

On the side of recovery strategies, the objective of the intervention is determined
by the external environment and does not depend of any characterization of the
situation. It is related to the organizational goals regarding a particular event.

The dimensions scope, detection, and event type do not have any direct impact on
the recovery strategy. Detection is important to know how the event was identified.
Since similar events can be automatic or manually detected, this is of minor
importance in determining the recovery strategy. The scope dimension determines the
number of instances affected by the situation but does not affect the recovery strategy.
The same strategy can be applied to all instances, or different strategies may be
applied to different instances. Finally, the event type dimension does not have a clear
relationship to the recovery strategy. For instance, a timeout does not imply that the
reaction time should be quick. However, the reaction time dimension can be used to

 A Collaborative Framework for Unexpected Exception Handling 177

increase the context awareness of a particular timed event. For instance, a timeout
may be classified as critical in some situations and not critical in others.

Table 1 summarizes the identified relationships. The rows refer to diagnosis and
the columns to recovery. The table shows two types of relationships: the first letter is
the relation between the diagnosis and the need to adopt a particular recovery strategy
(if the impact is high then there is a strong impact from the diagnosis row on the
necessity to use the recovery strategy in the column); and the second letter shows the
relation between the diagnosis and the particular type of recovery strategy within the
class (if the impact is high there is a strong relation between the diagnosis row and the
type of recovery strategy within the column). This means that in a particular situation,
even though the diagnosis might not indicate the necessity to use a particular recovery
strategy, if the users decide to use it then the chosen recovery strategy might depend
on the diagnosis. E.g., the time dimension on the diagnosis does not affect the
decision to use a collaboration type (L on the first letter), but if the users adopt a
collaboration type then the time dimension has an impact on the type of collaboration
type to choose (H on the second letter).

Table 1. Relation between event classification and handling strategies

 Collaboration
type

Collaboration
level

Ext.
monitoring

Tools to best
solution

Time L/H L/H L/H L/H
Goals impact H/L L/L M/H M/H
Organizational impact H/L H/L L/L L/L
Difference to
organizational rules H/L L/L M/H M/H

Complexity L/L L/L M/H H/H

Legend – L – low; M – medium; H – high

As the time associated with the exception is usually an independent factor, we start
by discussing time relations. Also, it is important to note that time restrictions have a
strong impact on the way people deal with problems. We have defined two
dimensions related with time: reaction time and time frame to achieve solution. The
former is important to specify how the person responsible should be informed about
an exception. Then, upon starting the diagnosis phase, that person can define the time
frame to achieve solution in a different way than reaction time: e.g., some contention
action was implemented but the final solution can be implemented in a more relaxed
time frame. Therefore, once the parameter time frame to achieve solution is defined, it
will have a stronger effect on the decision process than the reaction time. The time
row in the table reflects this effect and is obtained from these two dimensions.

One should not expect any impact from the time dimension on the usage of any
collaboration type, i.e., for any value of time nothing can be concluded about
collaboration among users (L on the first letter). However, if the time is quick and the
user wants to use collaboration the synchronous type should be the choice. On the
other hand, if the time is not quick, one can expect that an asynchronous collaboration
type may be the choice (H on the second letter). This shows low impact from the time
dimension on whether any collaboration type should be used, but a strong relationship
between the time dimension and the collaboration type to use. The relation is
therefore “L/H”.

178 H. Mourão and P. Antunes

The relationship between time and cooperation level is similar, since time does not
affect the usage of any collaboration level, but if one is to be used then asynchronous
cooperation level should be the choice on situations that require fast responses as
autonomous actors react faster. Synchronicity increases the delay on recovery actions.

Similar relationships are found between time and monitoring, and between time
and tools. The need for monitoring environmental information and using external
tools to calculate the best solution depends on a particular case and not on time; but if
they are needed the particular ones to choose will be restricted by the time factor.

The organizational goals dimension has implications on the required collaboration
type, since events with high impact should involve the user(s) responsible for the
task(s) and their supervisors, but the type of collaboration is not imposed. The
required collaboration level is not affected in any sense by the organizational impact
as there is not an indication to use any of the identified collaboration levels due to the
type of organizational impact. Even further, the collaboration level to choose is not
influenced by the goals impact. There are situations with high (low) organizational
goals impact that can be solved with only one user implementing recovery actions and
others where more than one person is necessary.

Regarding monitoring and tools, even though the necessity to use them depends on
the particular context, the usage of these mechanisms should deserve more attention
on situations with high impact on the organizational goals. The value in the table M/H
reflects these considerations where the M is used to signal that the concrete scenario
has a higher relation, but the impact of the organizational goals dimension should also
be taken into consideration. On the other hand, if the impact on the organization goals
is high special care should be placed on the monitoring actions and on the tools to use.

The organizational impact has a strong relationship with the collaboration level
and type. However, there is a small relationship with the type within these
dimensions. The relationship with monitoring requirements and tools is also low.

On the difference to organizational rules dimension, it is expected that more users
are involved when there are rules but the right ones can not be found, or when there
are no rules in the organization to handle the event. The involvement of more users is
important to find the right rules or define new ones. There is a high relation with the
selection of a collaboration type, but no restriction is imposed. The monitoring
requirements and the usage of tools are expected to increase in situations that differ
from normal procedures, and the type of adopted mechanism will also depend on the
degree of difference. No relation is established with the collaboration type.

Finally, for situations where it is possible to use a tool to calculate the best solution
and the complexity is high, the primer relevance is made on the external monitoring
requirements. As in previous situations, it is expected that external monitoring
requirements are mainly influenced by the concrete situation, so we expect a medium
relation. Nevertheless, if one is to be chosen, special care must be taken about the
right one. In these situations, as it is easily justifiable, there is high relation between
usage and type of tools. No relation is established with the collaboration type and
collaboration level, as it is expected that the solution, even though complex, can be
calculated by only one actor.

 A Collaborative Framework for Unexpected Exception Handling 179

6 Implementation

Figure 3 represents the proposed exception handling work model, an extended version
of our previous work [25], where two new branches were inserted addressing external
monitoring actions and collaboration mechanisms; and some minor changes were
done to the collaboration component. Further details regarding association of
instances and edit exception classification can be consulted in the cited paper.

In the present work we are not concerned with the specific implementation details,
in particular about the WfMS engine or model language used. Our main focus is how
exception handling is supported by the proposed framework.

The collaboration support component supports users specifically collaborating
within the scope of an exceptional event. The tasks implemented by the component
(see figure 3) enable the definition of a new responsible, involve more actors, and
implement the collaboration mechanism. The collaborate task in the model can be
synchronous or asynchronous where at any instant the users can choose the type to
use. When asynchronous collaboration is being used any involved actor can send a
message to any or all of the colleagues using a developed interface. The company
email system is used to inform the user that s/he should check the workflow system.
Synchronous collaboration support depends on the application domain and
environment as it can be implemented by a phone conversation, chat over a computer
or even face-to-face conversation. In both cases the exchanged information is stored
using the exception history component. If it is not possible to store the conversation
the users should insert the conclusions and any special comment. Further
developments of collaborative components will be subject to future research.

The wf interventions component is implemented using two branches: implement
recovery actions; and insert monitoring tasks. Recovery actions are a set of atomic
interventions that can be carried out on the specific workflow engine, e.g., suspend an
instance or insert a task in the original model.

Fig. 3. Exception handling workflow

180 H. Mourão and P. Antunes

The monitoring branch affords users to insert monitoring tasks that store exception
relevant information in exception history. Since this information is chronologically
stored, the user may monitor the system evolution. Even further, if external
environmental information or tools are available, the user may store links, e.g., a link
to traffic cameras available through the internet, which may be used to diagnose the
situation on a truck that is stuck on a traffic jam.

The detection of a new exception situation is represented in the figure by the first
two parallel branches on the top of the figure representing system and manual
detection. These tasks will insert all the mandatory information. As mentioned before,
a responsible person must always be associated to the exception and will execute the
next task “Edit exception info” where the most important information related to the
exception is inserted. This task assures that the responsible person is informed on the
situation and initiates the exception handling procedure.

The person responsible may then execute any of the actions specified in the six
branches of the exception handling workflow. Let us assume that a user decides to
involve three more actors in the exceptional event. Then, using the collaboration
component (email or chat) s/he informs the other actors that there is an exception to
be resolved. The diagnosis phase proceeds using the collaboration component, so the
other actors share their views of the present situation. Finally, they decide to insert
two monitoring actions in the work model, and two of them will be responsible for the
follow up. Once any special event regarding these monitoring actions is triggered, the
group is informed and the recovery action may proceed using the execute recovery
action branch. The process is repeated until the exceptional situation is overcome.

7 Example

During an operation, the patient’s heart monitoring machine breaks down. As soon as
the machine breaks, one nurse connects the patient to an available, but less reliable
machine, and continues monitoring the patient’s data. Meanwhile, she manually
instantiates the exception recovery workflow and assigns her name as the person
responsible. The time frame to reach a solution is set as quick, a brief description of
the event is inserted and she joins two other persons to the exception handling
procedure: one person will try to fix the machine (maintenance operator) and a
technical assistant will try to find another compatible machine for backup. As the time
frame is set as quick, both departments will be informed by a flashing light and a buzz
sound on their coordination room. The respective department coordinators will look at
their computers and find this exceptional situation to handle. They will initiate their
own recovery tasks and assign them to an employee in their department (using a form
requiring the name, the urgency, and a manually inserted description of the task).

As the maintenance employee will go inside the operations room, face-to-face
collaboration with the nurse is assured. However, if the situation in the operations
room changes, the technical assistant should be informed. A collaborative reporting
task is generated where both the technical assistant coordinator and the nurse can read
and write information. Both of them write any status changes. If the maintenance
operator fixes the machine, the nurse writes this information and the technical
coordinator informs the employee. If, on the other hand, a compatible machine is

 A Collaborative Framework for Unexpected Exception Handling 181

found, the technical assistant informs his coordinator, who writes down the predicted
available time. If the solution is approved by the nurse the maintenance operator will
start to prepare the replacement. When the technical assistant arrives with the
machine, the maintenance operator replaces it and the exception is closed.

However, one can imagine a dramatic case where all the machines are allocated to
patients and someone responsible has to decide whether they can be removed or not.
The technical assistant coordinator informs the nurse and they decide to involve the
doctor responsible for the area. They insert a new task in the work model supplying
information to the doctor with a high priority: again, a signaling system should be
available so the doctor is quickly informed. The doctor analyses the task description
and decides, given the patients’ situations, if she has enough information to make a
decision. If not, she initiates a chat session with the nurse (new task). Let us assume
the doctor decides to remove a machine from one of her patients but only after a new
nurse is assigned to monitor this patient. She therefore affects another instance to the
exception (the instance associated to this new patient) and inserts three new tasks:
find a new nurse, remove the machine, and replace the machine once the operation is
finished (note that the first and second tasks are in parallel to the original operation
sequence, while the last is placed after the operation is finished). The first is assigned
to the nurse coordinator and the other two to the technical assistant coordinator. Once
the new nurse is monitoring the patient, the first task is completed and the technical
assistant can take the machine to the operations room. After the operation is finished,
the task to move the machine back to the patient is ready to be executed. Only after
the machine is replaced in its original position the exception is completed.

8 Conclusions

The major concern addressed by our framework is the support to unexpected
exceptions, defined as situations that can not be handled in an automatic way because
the system does not have information about them, nor can infer such information from
previous analogous situations. Under these circumstances, collaborative user
involvement is crucial to determine the most appropriate solution.

Our analysis highlighted a fundamental system requirement: maintain task
execution under model guidance during normal operation and change to unstructured
behavior when an unexpected exception occurs, supporting users giving the control
back to model guidance after the exceptional situation is overcome.

We developed an exception handling process to support this behavior, comprising
collaborative diagnosis, recovery and monitoring tasks. Furthermore, we analyzed in
detail the characteristics and relationships between the diagnosis and recovery tasks.
The diagnosis task is based on a new classification of unexpected exceptions
proposed in this paper. Several dimensions characterizing the recovery tasks, as well
as relationships with the classification of unexpected exceptions are proposed as well.
The resulting framework helps users collaborating to devise appropriate exception
handling strategies for unexpected situations.

182 H. Mourão and P. Antunes

Bibliography

1. Abbott, K.R., and Sarin, S.K., 1994. Experiences with workflow management: issues for
the next generation. Proc. of the 1994 ACM Conference on CSCW. Chapel Hill, North
Carolina, United States, pp. 113-120.

2. Agostini, A., and De Michelis, G., 2000. A light workflow management system using
simple process models. CSCW, 9(3): 335-363.

3. Agostini, A., De Michelis, G., and Loregian, M., 2003. Undo in Workflow Management
Systems. BPM 2003. Springer-Verlag, Netherlands, pp. 321-335.

4. Bassil, S., Rinderle, S., Keller, R., Kropf, P., and Reichert, M., 2005. Preserving the
Context of Interrupted Business Process Activities. 7th ICEIS 2005. USA.

5. Bernstein, A., 2000. How can cooperative work tools support dynamic group process?
bridging the specificity frontier. CSCW '00: Proceedings of the 2000 ACM Conference on
CSCW. ACM Press, Philadelphia, pp. 279-288.

6. Casati, F., 1998. Models, Semantics, and Formal Methods for the Design of Workflows
and their Exceptions. PhD Thesis, Politecnico di Milano.

7. Casati, F., Ceri, S., Pernici, B., and Pozzi, G., 1996. Workflow Evolution. Data and
Knowledge Engineering, 24(3): 211-238.

8. Casati, F., and Pozzi, G., 1999. Modelling exceptional behaviors in commercial workflow
management systems. Proc. IFCIS, International Conference on CoopIS, CoopIS '99. IEEE
International, Edinburgh, UK, pp. 127-138.

9. Chiu, D.K., 2000. Exception Handling in an Object-oriented Workflow Management
System. PhD Thesis, Hong Kong Univ. of Science and Technology.

10. Chiu, D.K., Li, Q., and Karlapalem, K., 2001. WEB Interface-Driven Cooperative
Exception Handling in ADOME Workflow Management System. Information Systems,
26(2): 93-120. Elsevier Publishers.

11. Dayal, U., Hsu, M., and Ladin, R., 1990. Organizing Long-Running Activities with
Triggers and Transactions. SIGMOD'90. NJ, USA.

12. Dellarocas, C., and Klein, M., 1998. A Knowledge-based approach for handling
exceptions in business processes. WITS'98. Helsinki, Finland.

13. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., and Zbyslaw, A., 1996. Freeflow:
mediating between representation and action in workflow systems. Proc. of the 1996 ACM
Conference on CSCW. ACM Press, New York.

14. Eder, J., and Liebhart, W., 1995. The Workflow Activity Model WAMO. Int. Conf. on
Cooperative Information Systems. Vienna, Austria.

15. Eder, J., and Liebhart, W., 1996. Workflow Recovery. 1st IFCIS Intl. Conf. on
Cooperative Information Systems (CoopIS'96). IEEE, Belgium, pp. 124 - 134.

16. Ellis, C., and Keddara, K., 2000. A Workflow Change is a Workflow. In: W.D. van der
Aalst, J. Oberweis (Editor), Business Process Management: Models, Techniques, and
Empirical Studies. Springer-Verlag, pp. 201-217.

17. Ellis, C., Keddara, K., and Rozenberg, G., 1995. Dynamic change within workflow
systems. Organizational Computing Systems., Milpitas, CA, USA.

18. Ellis, C., and Nutt, G.J., 1993. Modeling and enactement of workflow systems.
Application and Theory of Petri Nets. Springer-Verlag, Illinois, USA, pp. 1-16.

19. Faustmann, G., 2000. Configuration for Adaptation - A Human-centered Approach to
Flexible Workflow Enactment. CSCW, 9(3): 413-434.

20. Han, Y., Sheth, A.P., and Bussler, C., 1998. A Taxonomy of Adaptive Workflow
Management. Conf. on CSCW - Workshop - Towards Adaptive Workflow Systems.
Seattle, WA, USA.

 A Collaborative Framework for Unexpected Exception Handling 183

21. Hayes, N., 2000. Work-arounds and Boundary Crossing in a High Tech Optronics
Company: The Role of Co-operative Workflow Technologies. CSCW, 9(3): 435-455.

22. Hwang, S.Y., Ho, S.F., and Tang, J., 1999. Mining Exception Instances to Facilitate
Workflow Exception Handling. 6th Int. Conf. on Database Systems for Advanced
Applications. Hsinchu, Taiwan.

23. Jorgensen, H.D., 2001. Interaction as Framework for Flexible Workflow Modelling. Group
'01. ACM Press, Boulder, Colorado, USA.

24. Luo, Z., 2001. Knowledge sharing, Coordinated Exception Handling, and Intelligent
Problem Solving for Cross-Organizational Business Processes. PhD Thesis, Dep. of
Computer Sciences, University of Georgia.

25. Mourão, H.R., and Antunes, P., 2004. Exception Handling Through a Workflow. CoopIS
2004. Springer-Verlag, Agia Napa, Cyprus.

26. Reichert, M., and Dadam, P., 1998. ADEPTflex - Supporting Dynamic Changes of
Workflows Without Loosing Control. Journal of Intelligent Information Systems, 10(2):
93-129.

27. Reichert, M., Dadam, P., and Bauer, T., 2003. Dealing with Forward and Backward Jumps
in Workflow Management Systems. Software and Systems Modeling, 2(1): 37-58.
Springer-Verlag.

28. Rinderle, S., 2004. Schema Evolution in Process Management Systems. PhD Thesis,
University of Ulm.

29. Rinderle, S., Reichert, M., and Dadam, P., 2003. Evaluation of Correctness Criteria for
Dynamic Workflow Changes. BPM '03. Netherlands, pp. 41-57.

30. Saastamoinen, H., 1995. On the Handling of Exceptions in Information Systems. PhD
Thesis, University of Jyväskylä.

31. Sadiq, S.W., 2000. On Capturing Exceptions in Workflow Process Models. Proc. of the
4th Int. Conference on Business Information Systems. Poznan, Poland.

32. Schmidt, K., 1997. Of maps and scripts - the status of formal constructs in cooperative
work. GROUP '97: Proc. of the Int. ACM SIGGROUP Conf. on Supporting Group Work:
The Integration Challenge. United States, pp. 138-147.

33. Sheth, A.P., Georgakopoulos, D., Joosten, S.M., et al, 1996. Report from the NSF
workshop on workflow and process automation in information systems. ACM SIGMOD
Record, 25(4): 55-67. ACM Press.

34. Strong, D.M., and Miller, S.M., 1995. Exceptions and Exception Handling in
Computerized Information Systems. ACM Trans. on Information Systems, 13(2).

35. Suchman, L.A., 1987. Plans and Situated Actions. MIT Press.
36. van der Aalst, W., and Basten, T., 2002. Inheritance of workflows: an approach to tackling

problems related to change. Theoretical Computer Science, 270(1).
37. van der Aalst, W., Basten, T., Verbeek, H., Verkoulen, P., and Voorhoeve, M., 1999.

Adaptive Workflow: On the interplay between flexibility and support. Proceedings of the
1st ICEIS. Setúbal, Portugal, pp. 353-360.

38. Weber, B., Wild, W., and Breu, R., 2004. CBRFlow: Enabling Adaptive Workflow
Management through Conversational Case-Based Reasoning. European Cof. on Case-
Based Reasoning (ECCBR'04). Madrid, Spain.

A Workflow Mining Method Through Model Rewriting

Jacques Wainer1, Kwanghoon Kim2, and Clarence A. Ellis3

1 Institute of Computing State University of Campinas Campinas,
13084-971, SP, Brazil

wainer@ic.unicamp.br
2 Collaboration Technology Research Lab., Department of Computer Science,
Kyonggi University, San 94-6 Yiui-dong Youngtong-gu Suwon-si Kyonggi-do,

442-760, South Korea
kwang@kyonggi.ac.kr

3 Collaboration Technology Research Group, Department of Computer Science,
University of Colorado at Boulder, Campus Box 430,

Boulder, CO, 80309-0430, USA
skip@cs.colorado.edu

Abstract. This work presents a workflow process mining method that is, at least,
as powerful as many others presented in the literature, as measured by the exam-
ples presented in the literature. The method is based on a grammar of rewriting
expressions, by which a model is adapted to include a new execution trace. We
also discuss the intrinsic limits of the mining process, which we believe has not
been a topic clearly stated and discussed in the published research.

1 Introduction

In recent times, workflow (business process) and its related technologies have been
constantly deployed and so its becoming gradually a hot issue in the IT arena. This at-
mosphere booming workflows and business processes modeling and re-engineering is
becoming a catalyst for triggering emergence of the concept of workflow mining that
rediscoveries workflows from workflow logs collected at runtime in order to support
workflow design and analysis for redesigning and re-engineering workflows and busi-
ness processes.

Formally, the process mining problem is given a set of logs of workflow execution,
called traces, reconstruct the workflow model that generated such traces. We are con-
cerned in this paper with exact mining, that is, all traces must be explained or generated
by the model. Variations of the process mining problem allows only for some of the
traces to be explained by the model, or that not all parts of the traces must be explained.

This paper discusses a model for process mining based on model rewriting. We de-
fine a set of grammar rules that modifies a process description (a model) to incorporate
a new trace.

Section 2 discusses some of the previous results in the field. Section 3 discusses the
intrinsic limits of the mining process, or in other words, we show that the problem is
ill-defined and there are an infinite number of solutions to the same problem. We feel
that researchers in the field do not have this result or its consequences clear. Section 4

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 184–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Workflow Mining Method Through Model Rewriting 185

discusses our model rewriting method and its characteristics. Section 5 shows that our
model can mine cases that were discussed in the literature as examples of different
algorithms for mining, and thus, in a very weak sense, our model subsumes some of
these algorithms. Section 6 lists briefly some conclusions.

2 Related Works and Background

So far, there have been several workflow mining related researches and developments
in the workflow literature. Some of them have proposed the algorithms [1,2,4,5,6,8,9]
for workflow mining functionality, and others have developed the workflow mining
systems and tools [3,7,10]. Particularly, as the first industrial application of workflow
mining, J. Herbsta and D. Karagiannis in [3] presented the most important results of
their experimental evaluation and experiences of the InWoLvE workflow mining sys-
tem. However, almost all of the contribution are still focusing on the development of
the basic functionality of workflow mining techniques. W.M.P. van der Aalst’s research
group, through the papers [1] and [2], proposed the fundamental definitions and the use
of workflow mining to support the design of workflows, and described the most chal-
lenging problems and some of the workflow mining approaches and algorithms. The
problems, which they stated in [2], are the short-loops (one-length loop and two-length
loop) problems, invisible task, duplicate task, implicit places, non-free choice, and the
synchronization of OR-join place problems. The starting point of this paper is a crit-
ical observation and remark on those problems and their solutions proposed in [1] as
followings:

– They are looking for the solutions for rediscovering an exact workflow model with
the original one from workflow logs.

– The workflow models are based upon the Petri Net modeling methodology that
is a quite general-purpose modeling methodology. So, it may make the workflow
models more complex and make their solutions much more theoretic, which mean
that their problems and solutions may not reasonably reflect the practical workflow
models on the real-world’s business situation.

– The problems stated in [2] may be not the real workflow mining problems but the
phantom problems caused by the Petri Net model, itself.

The work of Schimm [4] has some similarities to ours, in the sense that it uses bal-
ances workflow models (what is called in [2] as block-oriented models) and is based on
transformation rules on the models. Pinter and Golani [5] use time information of both
the start and end of the activities to derive traces that already include information when
two activities are parallel. Cook et al. [6] uses a more statistical/probabilistic approach
to mining processes, the mined process only probabilistically models the traces. [7,8]
are works that do not attempt to mine exact workflow models from traces, but to capture
interesting temporal patterns among the activities - more in sync with the goals of data
mining itself, which aims at discovering interesting but not necessarily true patters on
the data.

186 J. Wainer, K. Kim, and C.A. Ellis

3 The Limits of Mining Processes

A topic that we believe has not been properly discussed in the previous research work is
that process mining is a ill-defined problem. There is no single correct or best solution
to the problem of given a set of executions traces determine a process model that could
have generated them.

There are very large and possibly infinite number of workflow models that sat-
isfy any set of workflow traces. For example, given the following set of traces T =
{abcde, acbe, abce} let us discuss some of these models.

3.1 Most Generic Models (MGM)

There is one model which we will call the simple MGM (sMGM) which is composed
of all activities in T in a or-split with a loop back (figure 1). There are also an infinite
set of MGM models which extent the simple MGM with any number of fake activities
(fake activities are activities names not present in T), as illustrated by figure 1.

B

C

D

E

A

B

C

D

E

A

X1

X2simple most generic model

non−simple most generic model

Fig. 1. Most generic models

The MGM correctly and completely model all traces in T and furthermore they
model all future execution traces too.

MGM with constraints. One can rightfully claim that MGMs are too generic - if all is
allowable, why have a workflow at all? But even is there are constraints that one which
to enforce, for example, that b cannot happen before a, it is likely that one can create
MGMs that satisfy the constraint. For example, a simple MGM that satisfy the con-
straint that b cannot happen before a is shown in figure 2. But constrained MGMs are
not a standard in process mining, because they need a specification of the constraints
- no process mining problem specification we are aware of includes constraints. The
constraints could be implicitly defines by using negative traces, that is traces of exe-
cutions that should not happen, but again this would make the process mining problem
not only much more complex but also unrealistic - one cannot generate a reasonable set
of negative traces.

A Workflow Mining Method Through Model Rewriting 187

B

C

D

E

A

C

D

E

A

A

Fig. 2. Constrained MGM

3.2 Most Specific Model (MSM)

In parallel to MGM there is one model that we will call the simple most specific model
(sMSM) and there are an infinite number of MSM that extend the sMSM by adding
fake activities (or more specific fake traces). The sMSM is just a or-join of all traces in
T as show in figure 3. The sMSM will satisfy all past traces, and only them.

3.3 Discussion on the Limits of the Mining Process

This section has demonstrated that there are many and possibly infinite process models
(if fake activities are allowed) that could be mined from a set of traces. And some of
these models are very easy to compute. This places a epistemic problem on the whole
line of process mining research - how to evaluate the different algorithms and techniques
proposed.

More specifically, each algorithm will necessary embody an explicit or implicit bias
toward particular models among all the possible ones. In other words, mining algo-
rithms must necessary pick one (or more) reasonable models among the infinitely many
that are possible. But the literature does not discuss what are the criteria that define rea-
sonable models.

There seems to be some common sense rules for reasonable models which include,
for example no fake activities. Also the MSM seems too “unnatural” - no business will

A B C D E

A C B E

A B C E

Fig. 3. Simple most specific model

188 J. Wainer, K. Kim, and C.A. Ellis

run on such processes. But there is no more deeper discussion in the literature about the
rules of reasonable workflow models. We feel that this discussion will be very beneficial
to the whole process mining line of research. Unfortunately we are not ready in this
paper to advance this issue.

4 A Model Rewrite Method

The central ideas of our approach are:

– the method modifies an existing model to incorporate a new trace. Thus, it is an
incremental algorithm: after seeing the first trace the algorithm generate the trivial
sMSM for that trace and upon seeing the second trace, adapts the existing model to
incorporate the new trace.

– the method is a series of rewrite rules that transform the model plus trace into a new
model.

We will follow the following notation

– αβ represents the sequence of β after α.
– α + β represents the or-split/join of α and β
– α‖β represents the and-split/join of α and β
– α
β is a loop in which α is in the main branch, and β is in the alternative path
– if M is a model and α is a trace, then M ⊕ α is the amalgamation of M and the

new trace, but also the or-split/join of the two expressions.
– if α is a model (expression) then α′ is a sequence of activities that can be generated

from α

Thus, the rewrite rules are expressions of the form M ⊕ β ⇒ M ′ where M and M ′

are models (expressions) and β is a trace, that is a sequence of activity names.

4.1 Rewrite Rules

Following the tradition of deduction rules, we classify the rewrite rules in two cate-
gories, the structural rules and the introduction rules. The structural rules distribute the
⊕ operator where as introduction rules introduce a workflow operator (+, ‖,
) in the
appropriate conditions.

The structural rules are:

– S1 - α ⊕ α′ ⇒ α that is, if the new trace can be generated from the model, there is
no need to change the model

– S2 - αβ ⊕ γδ ⇒ (α ⊕ γ)(β ⊕ δ)

The introduction rules are listed below. The name of the rule is of the form op-I
where op is the operator being introduced.

– or-I α ⊕ β ⇒ (α + β),
– and-I αβ ⊕ β′α′ ⇒ α‖β
– loop-I α ⊕ α′βα′ ⇒ α
β
– and2-I (α‖β)γδ ⊕ α′δ′ ⇒ (α‖(βγ))δ

A Workflow Mining Method Through Model Rewriting 189

Furthermore we assume some obvious equivalence rules among model, such as a+
b ≡ b + a and a‖b ≡ b‖a, among others.

The rule and2-I is the only case of a conditional rule: its application must be
checked with previous traces - it may be the case that a previous trace does not agree
with the transformation, and thus, it cannot be applied.

4.2 Example

Given the traces T = {abcde, acbe, abce} discussed above, the process model rewrite
technique would generate the following models:

– M1 = abcde

– M2 = abcde⊕acbe
S2+S2� a(bcd⊕cb)e S2+andI� a(b‖c)(d⊕ε)e orI� a(b‖c)(d+ε)e

– M3 = a(b‖c)(d + ε)e⊕ abce
S2� a[(b‖c)⊕ bc][(d + ε)⊕ ε]e S1+S1� a(b‖c)(d + ε)e

The symbol
S2+s2� denotes derivation and the superscript are the rules that should be

applied.

4.3 Characteristics of the Rewrite Approach

At its current state, our rewrite proposal has three characteristics. First the result de-
pends on the order of presentation of traces. If the same set of examples where presented
in different order the result can be vastly different models, even though the models cor-
rectly generate all traces.

The second characteristic is that it only generates balanced workflow models. Bal-
anced models are workflows models in which or-split/joints are nested within and-
split/joint and vice versa.

The more serious limitation of the method is that it is not yet an algorithm. The
rewrite rules are non-deterministic and at the moment we do not have a algorithm that
will choose which rule to apply and how to apply it.

5 Examples from the Literature

We can show that the rewrite method can at least correctly generate some examples that
are discussed in the literature. Thus, at least regarding such examples, our method is
equivalent to the one proposed by others.

Example 1 in [2]. The trace T is the following: T = {abcd, acbd, abcd, acbd, ef}
Given the traces above, the models are:

– M1 = abcd
– M2 = abcd ⊕ acbd � a(b‖c)d
– M3 = a(b‖c)d ⊕ abcd � a(b‖c)d
– M4 = a(b‖c)d ⊕ acbd � a(b‖c)d
– M5 = a(b‖c)d ⊕ ef � (a(b‖c)d) + (ef)

which is exactly the result discussed in [2].

190 J. Wainer, K. Kim, and C.A. Ellis

Example 4.2 in [2]. This example is discussed in [2] as the duplicate task. T = { abcd,
acbd, abcd, acbd, bf }

– M1 = abcd
– M2 = abcd ⊕ acbd � a(b‖c)d
– M3 = a(b‖c)d ⊕ abcd � a(b‖c)d
– M4 = a(b‖c)d ⊕ acbd � a(b‖c)d
– M5 = a(b‖c)d ⊕ bf � (a(b‖c)d) + (bf)

M5 is the model [2] as the generated model. But here our method shows one of its
limitation. Other rewrite rules could be applied at the stage a(b‖c)d ⊕ bf , resulting the
complex model M5′ = (a + ε)[(b(ε + f))‖(cd + ε)]. Clearly M5 is more “reasonable”
than M5′ , but what exactly makes it more reasonable? And how to incorporate this into
the selection of rules to be applied so that the resulting model is likely to be reasonable?

As we discussed above, the other challenging problems listed on [2] are more spe-
cific to the Petri-net representation of processes that the authors adopt than generic min-
ing problems. In particular examples 4.1 and 4.3 in [2] (hidden tasks and non-choice
free) are solved by our method. For example 4.4 (short loops) our method will not
generate short sequences of the same task, it will always prefer a loop construction.

Example 5 in [4]. The set of traces is T = { abcdefh, acbdefh, abcdefh, acbdegh,
abcdegh, acbdegh, acbdefh, acbdegh }. We make a simplification in the set T . In [4],
by using both the start and end times of an activity, the author concludes that in the
first example, b and c are parallel activities. We represented the traces with parallel
execution as two different traces.

– M1 = abcdefh
– M2 = abcdefh ⊕ acbdefh = a(b‖c)defh
– M3 = a(b‖c)defh ⊕ abcdefh = a(b‖c)defh
– M4 = a(b‖c)defh ⊕ abcdegh = a(b‖c)de(f + g)h
– M5 = a(b‖c)de(f + g)h ⊕ abcdegh = a(b‖c)de(f + g)h
– M6 = a(b‖c)de(f + g)h ⊕ acbdegh = a(b‖c)de(f + g)h
– M7 = a(b‖c)de(f + g)h ⊕ acbdefh = a(b‖c)de(f + g)h
– M8 = a(b‖c)de(f + g)h ⊕ acbdegh = a(b‖c)de(f + g)h

which is the model proposed by the author.

6 Conclusions

This paper presented an ongoing work of defining a process mining method based on
model rewrite rules. At the current stage of the research we can only claim that our
model correctly deals with examples proposed by other authors as illustration of their
own methods and algorithms. So, in some weak sense, it seems that this method is as
strong as other algorithms proposed in the literature.

The fact that our method is incremental is, we believe, of particular importance.
Our rewrite rules can be used, for example, to incorporate an exceptional execution
trace into an existing workflow model. This allows for an interesting methodology to

A Workflow Mining Method Through Model Rewriting 191

implement a workflow into an organization - develop a simple workflow model for the
most normal processes and use the rewrite rules to adapt the model to the traces of more
exceptional cases.

This work also showed that the problem of process mining is ill-defined and only
be defining what are “reasonable” models among the infinite number of models that are
possible solutions to the mining problem will the field advance in a significant way.

We are currently working in many directions, including a definition of “reasonable”
models, and defining a heuristics to select the rewrite rules to be applied so that there
the generated models are reasonable.

References

1. W. M. P. van der Aalst, B. F. van Dongena; J. Herbst, L. Marustera, G. Schimm and A. J.
M. M. Weijters: Workflow mining: A survey of issues and approaches. Journal of Data &
Knowledge Engineering, Vol. 47, Issue 2, pp. 237-267, Elsevier, November 2003

2. W. M. P. van der Aalst and A. J. M. M. Weijters: Process mining: a research agenda. Journal
of Computers in Industry, Vol. 53, Issue 3, Elsevier, April 2004

3. Joachim Herbsta, and Dimitris Karagiannisb: Workflow mining with InWoLvE. Journal of
Computers in Industry, Vol. 53, Issue 3, Elsevier, April 2004

4. Guido Schimm: Mining exact models of concurrent workflows. Journal of Computers in
Industry, Vol. 53, Issue 3, Elsevier, April 2004

5. Shlomit S. Pinter, and Mati Golani: Discovering workflow models from activities’ lifespans.
Journal of Computers in Industry, Vol. 53, Issue 3, Elsevier, April 2004

6. Jonathan E. Cook, Zhidian Du, Chongbing Liu and Alexander L. Wolf: Discovering models
of behavior for concurrent workflows. Journal of Computers in Industry, Vol. 53, Issue 3,
Elsevier, April 2004

7. Daniela Grigori, Fabio Casati, Malu Castellanos, Umeshwar Dayal, Mehmet Sayal and
Ming-Chien Shan: Business Process Intelligence. Journal of Computers in Industry, Vol.
53, Issue 3, Elsevier, April 2004

8. San-Yih Hwang, Chih-Ping Wei and Wan-Shiou Yang: Discovery of temporal patterns from
process instances. Journal of Computers in Industry, Vol. 53, Issue 3, Elsevier, April 2004

9. Kwanghoon Kim and Clarence A. Ellis: Workflow Reduction for Reachable-path Rediscov-
ery. Proceedings of the ICDM2003 WORKSHOP: Foundations and New Directions in Data
Mining, Melbourne, Florida, USA, November, 2003

10. Minjae Park and Kwanghoon Kim: An Efficient Workcase Classification Method and Tool
in Workflow Mining. Proceedings of the DMIN2005:The International Conference on Data
Mining, Monte Carlo Resort, Las Vegas, Nevada, USA, June, 2005

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 192 – 207, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design of an Object-Oriented Workflow Management
System with Reusable and Fine-Grained Components

Gwan-Hwan Hwang1, Yung-Chuan Lee2, and Sheng-Ho Chang1

1 Department of Information and Computer Education,
National Taiwan Normal University, Taipei, Taiwan
{ghhwang,shchang}@ice.ntnu.edu.tw

2 System Development and Technical Support Department,
Trade-Van Information Service Company, Taipei, Taiwan

Abstract. Languages that support object-oriented programming are now
mainstream, and can support software reuse. This study focused on the
reusability of components for workflow management systems (WfMSs).
Implementing a WfMS in object-oriented programming languages without
considering the characteristics of the WfMS does not ensure that all the
components will be reusable. We first clarify the reusability of WfMSs and point
out the difficulties in constructing reusable components for WfMSs. We then
propose an object-oriented model for WfMSs named the “Java-based
object-oriented WfMS” (JOO-WfMS), whose components are fine-grained and
are classified into a functional stack with three layers. This extends the
reusability of objects in developing workflow applications. The resulting
architecture can support real-time flow control as well as the dynamic
instantiation of objects. Two mechanisms are embedded into the JOO-WfMS to
increase the reusability of its components: (1) a workflow failure-handling
language, which can increase the reusability of activities when flexible failure
recovery is necessary; and (2) the user communication components and their
corresponding architecture. The goal of the architecture is to increase the
reusability of codes used for communication between the user and the activities
in WfMSs.

Keywords: Workflow Management System, Object-Oriented Programming
Language, Software Components, Reusability.

1 Introduction

Workflow management systems (WfMSs) are software systems for supporting
coordination and cooperation among members of an organization whilst they are
performing complex business tasks [1–5]. The business tasks are modeled as workflow
processes, which are automated by the WfMS. The workflow model (also referred to as
the workflow process definition) is the computerized representation of the business
process. It defines the starting and stopping conditions of the process, the activities in
the process, and control and data flows among these activities. An activity is a logic

 Design of an Object-Oriented Workflow Management System 193

step within a workflow, which includes the information about the starting and stopping
conditions, the users who can participate, the tools and/or data needed to complete this
activity, and the constraints on how the activity should be completed. Activities are
usually organized into a directed graph that defines the order of execution among the
activities in the process. Nodes and edges in the graph represent activities and control
flow, respectively. A workflow process instance is the execution of a workflow process
definition by the WfMS. The execution of a workflow process instance is controlled by
the workflow engine.

Cox introduced the “software IC” concept in 1987 [6], with the aim of software
development mirroring hardware development in the use of existing components to
generate a new component. The reusability of classes or components is very important
to the realization of the software IC. The objects that are instantiations of classes
communicate via messages. The fundamental features of object-oriented programming
languages that support the reuse of classes include encapsulation, inheritance,
polymorphism, and object composition [6,7].

In this paper, we first analyze how to apply the existing technologies in
object-oriented programming languages to implement a WfMS with reusable
components. We present the design of a Java-based object-oriented WfMS, called a
JOO-WfMS. The components comprising the JOO-WfMS are fine-grained, and we
aim to reduce the dependence between components to the lowest possible level so as to
extend the reusability of components in developing workflow applications. Also, these
components are classified into a functional stack with three layers: a base layer that is
implemented by the implementer of the JOO-WfMS, and another two layers that are
implemented by the application programmer of the workflow system. The resulting
architecture can support real-time flow control as well as the dynamic instantiation of
objects.

Second, we demonstrate that straightforward application of the encapsulation,
inheritance, polymorphism, and object composition limits the reusability of
components in a WfMS. Two mechanisms are embedded into the JOO-WfMS to
increase the reusability of its components: (1) a workflow failure-handling (WfFH)
language, which can increase the reusability of activities when flexible failure recovery
is necessary by minimizing the dependence between activities; and (2) the components
for implementing user communication and their corresponding architecture. The goal
of the architecture is to increase the reusability of codes used to implement
communication between the user and the activities.

The remainder of the paper is organized as follows. Section 2 surveys the related
work. Section 3 discusses considerations in constructing a WfMS with reusable
components. Section 4 presents the functional stack and operational architecture of the
JOO-WfMS. Finally, Sections 5 and 6 present the experimental results and conclusion
of this paper, respectively.

2 Previous Work

The WooRKS is an object-oriented workflow system designed to assist organizations
in defining, executing, coordinating, and monitoring workflow procedures within a
shared environment. Its architecture relies on an object-oriented database management

194 G.-H. Hwang, Y.-C. Lee, and S.-H. Chang

system upon which all the objects are represented and supported by a UNIXTM server,
with which clients communicate via the TCP/IP protocol and run Microsoft
WindowsTM or OSF/MotifTM [8].

Xsoft’s InConcert is an open workflow product realized using object-oriented
technology and a client/server architecture with distributed multiplatform and
multinetwork support [9]. It allows for dynamic workflow modification (“process
mutation”) and ad-hoc routing. An application programming interface (API) with C
and C++ language bindings facilitates application integration, and provides a full range
of application development options for creating custom solutions. Its object-oriented
design with tools, associated API, and language bindings provide flexibility for system
developers deploying workflow solutions regarding integration with other systems,
extendibility, and some degree of reusability. However, its extendibility and reusability
apply mainly to process modeling and process implementation, and not to the entire
architecture of a WfMS.

TriGSflow is a flexible workflow framework supporting frequently changing
requirements [10]. Its architecture is based on an object-oriented database
(Gem-Stone/S), and employs object-oriented database technology to implement its
workflow model. An important feature of TriGSflow is the seamless integration of
event control action (ECA) rules into an object-oriented model, the flexibility of
workflow specification due to rule modeling, and the integration of external
applications as part of workflow processing. ECA rules take the follow form:

ON Event IF Condition DO Action

Events represent real-world situations (e.g., a machine breakdown) that result in the
invocation of rules. The condition part of a rule defines when to evaluate the condition
and a Boolean expression (e.g., “is the machine available?”), possibly based on the
result of a database query (e.g., “select all orders that are scheduled on the damaged
machine”). The action part (e.g., “schedule the next operation”) defines when to
execute the action, and a sequence of arbitrary messages. The TriGSflow system
provides an object-oriented workflow model that allows its users to build workflows by
instantiating predefined specialized classes. However, TriGSflow focuses on ECA
rules, and not on the reuse of components.

The micro-workflow encapsulates workflow features in separate components [11].
At the core of the architecture, several components provide basic workflow
functionality, and additional components implement advanced workflow features.
Using objects, software developers extend the core only with the features they need.
This design localizes the changes required to tailor a workflow feature to the
component that implements it. The synchronization-object micro-workflow employs
the ECA of TriGSflow [10]. Every procedure instance has its own precondition object,
which corresponds to the condition part of the ECA model. The Precondition
Manager is a separate process that monitors preconditions. A procedure begins
executing by transferring control to its precondition. The framework initializes the
precondition from the workflow runtime, and then places the precondition into the
queue of the PreconditionManager. In effect, this blocks procedure execution
until the condition is fulfilled. The PreconditionManager evaluates every queued

 Design of an Object-Oriented Workflow Management System 195

precondition continuously. This works well when the number of preconditions is small
and when their evaluation is not computationally intensive. As a result, this architecture
cannot support real-time flow control.

3 Some Considerations for Constructing Reusable Components for
a WfMS

A WfMS comprises many components, including a set of objects. Therefore, the reuse
of WfMS components involves the reuse of a framework [12], which is the design of a
set of objects that collaborate to carry out a set of tasks. Frameworks usually provide
the design of interfaces or abstract classes to represent what the developers should
implement and the way that its functions are divided among objects. Therefore, to
clarify the reusability of components, it is necessary to design a highly reusable WfMS.

Workflow engine, process, and activity are the basic components of the WFMS,
and the others are the advanced components.

.

Workflow Management System

Workflow Engine

Process
Activity

Process Definition Tool

Invoked Application Function

Distributed Workflow

Systems Administration & Monitoring Tools

Persistence

User Interface Failure Recovery

Fig. 1. Architecture of the WfMS

Based on the WfMC reference model [13] and the OMG workflow management
facility [14], we illustrate a generalization of the components of a WfMS in Fig. 1. In
addition to the components introduced in the reference model [13], we add two
functions that are common in modern workflow systems: failure recovery [15] and
persistence. As shown in Fig. 1, the basic components of a WfMS are a workflow
engine, process, and activity; a simple WfMS may only comprise these three
components. The advanced components are the failure-recovery mechanism,
process-definition tool, user interface, application invocation, workflow interopera-
bility, and system administration and monitoring tools. The increasing popularity of the
WfMS in different domains increases the importance of these advanced components. In
the following, we examine some of these components in order to determine the
characteristics they should exhibit in order to be reusable.

196 G.-H. Hwang, Y.-C. Lee, and S.-H. Chang

- Class

- Method or code
within class

- Interface or
abstract class

Workflow_Engine

{
//Method or code that invokes other class to
//interpret process definition
Abstract_Interpreter interpreter = getInterpreter() ;
interpreter.setProcessDefinition(“/D1.xml”) ;
interpreter.interpretDefinition() ;
……}

Abstract_Interpreter
{

void interpretDefinition() ;
……

}

Graph_Interpreter

void interpretDefinition(){
//interpret direct graph
……

}

- Implement

XPDL_Interpreter

void interpretDefinition(){
//interpret XPDL
……

}

Change the subclass
when the model language
of process definition changes

- Change codes or
objects

- Association

Workflow_Engine_A

{
//Method or code that interprets process definition
//represented with direct graph
……
……
……

}

Workflow_Engine_B

{
//Method or code that interprets process definition
//represented with XML process definition language
……
……
……

}

- Class

- Method or code
within class

- Change codes or
objects

Overwrite the interpretation codes
when the model language of process
definition changes

(A) Using the inheritance (B) Using the object composition

Fig. 2. Changing the interpretation function in the workflow engine

3.1 Workflow Engine

First of all, the workflow engine is the core of a WfMS. It is responsible for various and
complex functions and should communicate with the majority of other components in
the WfMS. Therefore, its reusability is improved by using a compositional design [11]
in which only the basic functions should be implemented within the workflow engine,
with the additional functions embedded using objects. For example, one of the
important functions for the workflow engine is to interpret the process definition. The
interpretation function should be designed according to the employed definition
language. Consider the situation that we need to change the definition language from
GPSG [16] to XPDL [17]. Fig. 2A illustrates how this can be achieved without
changing the design of the workflow engine. The interpretation function is
implemented using the workflow_Engine_A class. If we want to change the
definition model, we need to inherit the workflow_Engine_A class and override
the method that implements the interpretation function. Although other codes in the
methods of the workflow_Engine_A class are reused, the workflow_
Engine_A class cannot be reused directly. A compositional design is shown in
Fig. 2B. In this design, we separate the implementation of interpretation function from
workflow_Engine_A class and implement it in the Abstract_Interpreter
subclass. The workflow_Engine_A class invokes the method defined in the
Abstract_Interpreter class to interpret process definition.

3.2 Workflow Process

Generally speaking, only one or a small set of activities should be activated during the
execution of a process. This is because the lifetime of a process instance is always very
long, i.e., several hours or even several days. For the workflow process, it is necessary
for the programming language to support a mechanism to load and create the instances
of workflow activities dynamically; this can reduce the memory requirements as well
as the computation loading of the workflow server. For example, the forName and
newInstance methods in the Class class of the Java programming language
support loading a specific class and creating an instance, respectively.

 Design of an Object-Oriented Workflow Management System 197

- Class

- Method or code
within class

…

- Interface or
abstract class

- Implement

- Association

Activity

{
//Method or codes to invoke
//ExecCode class to execute
ExecCode ec= new ExecCode() ;
ec.Execute(arguments) ;
……

}

ExecCode
{
void Execute (Object[] arguments) ;
……

}

ExecCode_1

Void Execute (Object[] args) {
……

}

ExecCode_N

Void Execute (Object[] args) {
……

}

Activity_1

{
//Codes of task that will be executed in Activity_1
……
……
……

}

Activity_N

{
//Codes of task that will be executed in Activity_N
……
……
……

}

…

- Class

- Method or code
within class

(A) (B)

Fig. 3. Changing the execution codes of an activity

Another important feature that the workflow process should support is real-time
flow control. Whenever the execution of an activity is finished, the workflow system
should invoke the subsequent activity (or activities) instantly. Sometimes the branching
action in the flow control requires data access and computation. For example, the
workflow system may have to make several database transactions and analyze the
results to make the branch decision. Not all workflow systems support real-time flow
control. For example, TriGSflow [10] and micro-workflow [11] employ an ECA rule
model to handle flow control. Because many preconditions stored in the queue are
checked continuously on a round-robin basis, these methods cannot support real-time
flow control.

3.3 Workflow Activity

The activity is the basic execution unit of the workflow process. Different activities
involve the execution of different codes. A reusable activity component can be reused
to execute different execution codes. The design in Fig. 3A implements the execution
code in the Activity_1 class, and different tasks are implemented in different
activity classes. In this case, neither the activity nor the execution code can be reused.
In Fig. 3B, a task is implemented in an ExecCode subclass that is not directly related
to the Activity class. Therefore, changes to the ExecCode subclass will not affect
the Activity class, and the ExecCode subclass can be reused by other activities in
different processes.

3.4 User Interface

In the execution of the WfMS, the activity usually needs to communicate with the user.
The user interfaces are various and the user may connect to the system via different
types of devices. The reusability is broken if the programmer needs to modify the codes
in the activities when the WfMS is extended to accept a connection from a new client
device. The design of the window components and the implementation of display
protocols are the most important considerations for ensuring the reusability of
user-interface components (UICs).

198 G.-H. Hwang, Y.-C. Lee, and S.-H. Chang

3.5 Failure Recovery

Some workflow systems (e.g., transactional WfMSs) that emphasize stability and
reliability may implement a failure-recovery mechanism. The goal of failure recovery
in the WfMS is to bring the failed workflow process back to some semantically
acceptable state so that the cause of the failure can be identified. The problem can then be
fixed and the execution resumed to ensure the successful completion of the workflow
process. The basic failure-recovery process includes the following three steps:

1. The execution of the workflow process is terminated and the workflow engine then
decides the end compensation point (ECP) and the compensation set of the failure.

2. Activities in the compensation set are compensated.
3. The workflow process is restarted from the ECP.

Previous failure-recovery models [18–22] have some drawbacks. First, they only
allow the ECP and compensation set of a failure in an activity to be specified statically
before the workflow process is compiled, which limits the flexibility of failure
recovery. A more flexible way is to compute the ECP and compensation during the
process run-time according to the execution results of activities. Second, the ECP and
compensation set are specified by explicitly using the names (or some kind of
identities) of activities. Therefore, inserting or deleting activities to or from a workflow
process may require modification of the failure-recovery specification in another
activity. Such dependency between activities reduces their reusability.

We propose a new failure-recovery model for WfMSs [15]. This model is supported
with a new language, called the WfFH language, which allows the workflow designer
to write programs so that s/he can use data-flow analysis technology to guide failure
recovery during workflow execution. With the WfFH language, the computation of the
ECP and the compensation set for failure recovery can proceed during the workflow
process run-time according to the execution results and status of workflow activities.
Also, the failure-recovery definitions programmed with the WfFH language can be
independent, thereby dramatically increasing the reusability of the components in the
WfMS.

3.6 Workflow Persistence

Workflow engines usually log the execution history of the processes they execute for
evaluation and recovery purposes. Some of the systems store the history in the
database. Reusable persistence components can provide database-independence
operations for the developer of workflow applications.

4 The Functional Stack and Operational Architecture of the
JOO-WfMS

In this section, we present the architecture of the JOO-WfMS. The operation of a
WfMS is complicated. For example, the execution of an activity may involve the
activation of the user interface, database manipulation, and failure recovery. Some of
these are basic functions of the WfMS itself and others should be implemented by the

 Design of an Object-Oriented Workflow Management System 199

application programmer. Fig. 4A shows the functional stack of the components of the
JOO-WfMS. From the viewpoint of software engineering, dividing the components
into a stack provides at least two benefits: (1) promoting the reusability of all
components in the system, and (2) increasing the efficiency in software development.
The stack is divided into the following three layers:

1. The fundamental layer: This layer provides the basic components and mechanisms
for the system, and is implemented and maintained by the implementer of the WfMS
– the developer of the workflow application is not allowed to modify this layer. This
layer includes the Java interfaces (i.e., the prototype) of all the components listed in
Fig. 4 as well as the workflow engine that follows the defined interfaces. Also,
mechanisms such as event handling, exception handling, and failure recovery, and
the user-interface display protocols for different devices are implemented in this
layer.

2. The workflow basic component layer: In this layer, the programmer implements
all the needed classes for objects in Java according to the interface defined in the
fundamental layer. It contains objects for transitions, activities, execution codes of
activities, failure-handling objects, and process-definition interpreter objects.

3. The workflow process composition layer: In this layer, the programmer uses the
objects implemented in the second layer to construct his/her workflow process.

Fig. 4B illustrates the operational architecture of the JOO-WfMS. Its core consists of
the workflow engine, process, and activity. Several process instances are executed
simultaneously whilst being monitored and controlled by the workflow engine. The
process instances created by the workflow engine will notify the workflow engine of
events that occur during execution. Several activity instances and transition instances
are activated by a process instance. Note that the transaction objects control the flow of
the process. Similarly, activity and transition instances will notify the process instance
of the occurrences of events during execution. In the following subsections, we detail
the components of the JOO-WfMS.

4.1 Workflow Engine

The workflow engine in the JOO-WfMS is responsible for the following tasks:

 Receiving messages from the workflow participant.
 Initiating the process and starting it according to the process definition.
 Receiving and dealing with events from processes.
 Recovering and resuming processes after a system crash or the occurrence of

process failures.
 Supervising for administration and monitoring purposes.

In addition to handling messages from the workflow participant, the workflow engine
deals with events from processes. By default, a process instance will send an event to
the workflow engine when its execution state changes. Programmers can instruct the
workflow engine to execute some actions when receiving events from processes, e.g.,
saving some information about the process. To promote the reusability, we adopt a
compositional design for our workflow engine. We separate the implementation of the
following functions from the Workflow_Engine class: message handling,

200 G.-H. Hwang, Y.-C. Lee, and S.-H. Chang

(A) Functional stack of JOO-WfMS (B) The operational architecture of JOO-WfMS

1.Fundamental layer

• The prototype of components of WfMS
• Mechanisms like event handling, exception, or failure recovery
• User interface display protocol for different devices.

2.Workflow basic component layer

Objects for
• Process
• Flowchart objects for processes
• Activity
• Execution codes of activities
• Transition
• Entry and exit objects for transitions
• Failure handling objects
• Interpreter for process definition

Im
plem

ented by develper
of

w
orkflow

 application
Supported by
designer of W

fM
S

3.Workflow process composition layer

Use objects implemented in former layer to construct
executable workflow processes

Workflow engine

Instance of process P1

Flowchart

Participants

Execution
code

Failure
handling

Instance of
activity A1 ...

Entry

Exit

Instance of
transition T1

activate

notify

build

notify

...

activate

notify

Instance of process Pn

Flowchart…

build
notify

Message from users
• Add a new process
• Start a process
• Response to activity

Log

Role
Resource

Workflow storage

Participants

Execution
code

Failure
handling

Instance of
activity Am

Join

Split

Instance of
transition T1

Instance of
activity An

Participants

Execution
code
User

interface

Instance of
activity A1

Participants

Execution
code

Failure
handling

User
interface

Entry

Exit

Instance of
transition Tk

..

Fig. 4. Functional stack and operational architecture of the JOO-WfMS

system administration and monitoring, process control, process-definition
interpretation, and event handling. These functions are implemented in other classes,
and the workflow engine can invoke them as required. Therefore, we can change the
invoked classes to meet various functional requirements rather than having to modify
the Workflow_Engine class.

4.2 Workflow Process

In the JOO-WfMS, the workflow process component is responsible for the following
tasks:

 Creating and starting the instances of activities and transitions.
 Receiving and handling events from activities and transitions.
 Updating the information of the Flowchart object.

Flow control is crucial to a workflow system, and comprises the following two tasks:
(1) obtaining the activities that will be executed next, and (2) deciding the flow of
process when meeting branches. However, object-oriented systems lack a procedural
representation of control flow [24] due to the decomposition into classes that distributes
flow control among different objects. Thus, the global control flow and behavior are
less visible than in procedural programs [11]. Therefore, an additional challenge in
building object-oriented workflow architectures lies in providing abstractions that
maintain an explicit representation of the control flow without violating the principles
of good object-oriented design. In the JOO-WfMS, the programmer defines the
decision rules in Transition objects. A process instance can obtain information about
successor activities and transitions from its Flowchart.

Fig. 5 shows the schematic of the Flowchart, in which circular and rectangle nodes
represent the activity and transition, respectively. We present the details of the
transition object in Section 1.6. The following six methods are provided to control the
execution of process instance: startProcess, suspendProcess, terminate-
Process, abortProcess, resumeProcess, and restart Process. These
methods may be invoked by the workflow engine or system administration tools (full
details are available elsewhere [23]).

 Design of an Object-Oriented Workflow Management System 201

Role

Execution
code

Failure
handling

Entry

Exit

Instance of process P1

Flowchart

Instance of
activity A1

Role

Execution
code

Failure
handling

...
Instance of
transition

activate

notify

A1 A2

A3

{
Type = “Activity” ;
//activity or transition
Name = “A3” ; //name of activity
Ftype = “class” ;
//type of class file
Flocation = “activity.aty3” ;
//location of class file
Instance = “Y” ;
//instance or not
State = “Running” ;
//state of activity
In_node = new vector() ;
//the list of in node
Out_node = new vector() ;
… }

Instance of
activity An

T1

{
Type = “Transition” ;
Name = “T1” ;
Ftyp = “class” ;
Flocation = “transition.t1” ;
Instance = “Y” ;
State = “Running” ;
In_node = new Vector() ;
Out_node = new Vector() ;
…

}

Fig. 5. A schematic of Flowchart

Definition of
activity A1

Definition of
activity A2

Definition of
activity A3

. . . Definition of
activity A4

Definition of
activity A i

. . .
Definition of
activity An-1

. . . Definition of
activity An

Definition of activities

Flow of activities
Recovery definitions

•Start and stopping condition
•Users who can participate
•Tools and/or data needed
•Some constraints

Execution codes
Begin activity

……….
if ((quantity>order_limit) && (period==HOT))

RAISE_FAILURE over-quantity(order_NO,100);

……….
End activity

Recovery
definition of

failure F1
…

Definition of an activity

Compensation subroutine definitions

Default
compensation

subroutine

Compensation
suboutine for

failure F1

…Compensation
suboutine for

failure F2Definition of a workflow process

Failure-recovery
definition

Recovery
definition of

failure F2

Recovery
definition of

failure F3

Occurrence of
a failure called
over-quantity

Basic information
for activity execution

Fig. 6. Skeleton of an activity object

4.3 Workflow Activity

Fig. 6 illustrates the skeleton of an activity object in the JOO-WfMS. It contains basic
information for the execution of the activity and additional objects for handling failure
recovery. The basic information for activity execution includes at least the starting and
stopping conditions, the users who can participate, the tools and/or data needed to
complete the activity, the constraints on how the activity should be completed (such as
the time limits), and the execution codes of the activity. The additional failure-recovery
definition in the activity for failure recovery comprises recovery definitions and
definitions of the compensation subroutines. The execution code is the program that
executes the activity and which may trigger the failure-recovery process when the
execution causes a failure. In the execution code, a user interface is invoked to interact
with workflow users who participate in the execution of this activity.

4.4 User Interface

Our aim is to support a universal user interface in which the workflow participant can
use different types of client devices to communicate with the workflow engine. The
developer of the workflow application builds the user by embedding codes that invoke

202 G.-H. Hwang, Y.-C. Lee, and S.-H. Chang

an application program interface in the ExecutionCode object of the activity. This
is very similar to window programming in Java – we call the window components
provided in the JOO-WfMS UIC (full details of the functions and attributes of window
components provided in the JOO-WfMS are available elsewhere [23]).

(A) (B)

UICs JSP

Activity

Execution
Code

Database
UIC_type …User_IDAct_IDFlow_ID

User

1.Build user interface
with UICs

… …………

… …………

… …………

… …………

… …………

… …………

UIC
Proxy

2.Store the information
about the UICs and the
activity into database.

3.Interact with
WfMS by JSP

4.Invoke
UIC proxy.

5. Query the
information
about UIC

6. Retrieve
data

7.translate UIC
information
into HCI

8.Response

WfMS Web Server Label label = new Label() ;
label.setCaption(“label caption”) ;
label.setValue(“label value”) ;
label.setFontSize(2);
label.setFgColor(Color.Red) ;

TextField tf = new TextField() ;
tf.setType(“text”) ;
tf.setCaption(“textfield caption”);
tf.setValue(“textfield value”);
tf.setName(“textfield1”) ;
tf.setSize(20);

DataBase

Name = “”, Caption=“label caption”,
Value=“label value”, FontSize=2,
Fgcolor=“red”

Name = “textfield1”, type=“text”
Caption=“textfield caption”,
Value=“textfield value”, Size=10

UIC Proxy

label caption:

label value

textfield caption:
<input type="text"
name="textfield1"
size="20"
value="textfield value">

Fig. 7. Operation of the user interface in the JOO-WfMS

The operation of the user interface in the JOO-WfMS is shown in Fig. 7A. Although
our architecture does not limit the types of client devices used by the user, we assume
that the user connects to the JavaServer Pages (JSP) [25] server of the WfMS via a Web
browser.

Step 1: The programmer first invokes the UIC in the execution code of an activity
(Fig. 7B).

Step 2: The JOO-WfMS stores the UICs added in step 1 to a database.
Step 3: An user sends a request to a specific JSP server via the Web browser.
Step 4: After receiving the request, the JSP server consults the UIC proxy to

retrieve data and translate data of UICs in this user interface.
Step 5: The UIC proxy queries the data of UICs from the database.
Step 6: The database returns the results of querying.
Step 7: The UIC proxy translates the data of UICs into a specific format (e.g.,

HTML tags).
Step 8: The JSP server sends the result to the user via HTTP.

4.5 Failure Recovery

In the JOO-WfMS, we adopt the WfFH language to support a workflow failure-recovery
model [15]. The programmer defines the recovery definition of failure in the WfFH
language. As shown in Fig. 6, the recovery definitions of failures are translated into
failure-handling objects and then are embedded in the activity objects. In the
JOO-WfMS, we use code-generation technology to translate the WfFH language into
Java codes. The way to activate the failure-recovery process is specified in the execution
code of the activity. In the JOO-WfMS, the execution code of an activity is also a Java
program with the failure-recovery extension, which takes the following form:

RAISE_FAILURE Failure_Name(arg1, arg2, …,argn);

 Design of an Object-Oriented Workflow Management System 203

The JOO-WfMS compiler translates the above statement into the following Java
program (full details are available elsewhere [15,23]):

// To generate an array args to store arg1, arg2, …, and argn
Object[] args= new Object[n];
args[0]= arg1;
args[1]= arg2;
…
args[n]= argn;
// To instantiate a failure object
Failure fail = activity.getFailure(Failure_Name);
// To set up the failure arguments
fail.SetArguments(args);
// To throw a Java exception to start the failure-recovery process
throw new RaiseFailureException(fail);

4.6 Workflow Transition

Most workflow languages support the basic constructs of sequence, iteration, splits
(AND and OR), and joins (AND and OR) [26–28]. Fig. 8 shows the basic control flows
of the WfMS. The JOO-WfMS allows the programmer to implement specific branch
decisions according to the actual requirements. For example, in the “OR-split” shown
in Fig. 8, the programmer may have to control the branch decision by examining the
data stored in the database. The Transition component is the solution for flow
control in the JOO-WfMS. Fig. 9 illustrates the structure of the Transition
component, which has two objects: Entry and Exit. The programmer should
implement the onEnter and onExit methods of the Entry and Exit objects,
respectively. With different Entry and Exit objects, the transition can deal with any
complicated join and split conditions (full details are available elsewhere [23]). One of
the advantages of the control flow mechanism in the JOO-WfMS is that all the related
objects can be easily reused, including the Entry, Exit, and Transition objects.
The other advantage is that it can support real-time control flow: when the execution of
an activity terminates, the onEnter method of the Entry object of its following
Transition object(s) will be called immediately.

(A) SEQUENCE (B) OR-join (C) AND-join (D) SELECT-join

(E) OR-split (F) AND-split (G) SELECT-split

A1

A3

A4

A5

Transition

Entry
Boolean onEnter()
{}

Exit
LinkedList onExit()
{}

Transition

A2

•OR
•AND
•SELECTIVE

(In node)

(In node)

(In node)

(Out node)

(Out node)

•OR
•AND
•SELECTIVE

Fig. 8. Basic control flows in the WfMS Fig. 9. Structure of the transition
component in the JOO-WfMS

4.7 Workflow Persistence

Most commercial WfMS products use relational database management systems to store
the histories. Some techniques (e.g., the data access object introduced in J2EE) and
standards for database connectivity (e.g., ODBC and JDBC) help in the manipulation

204 G.-H. Hwang, Y.-C. Lee, and S.-H. Chang

of database systems. In addition to using databases, some WfMSs define their own data
structure to store the execution. Therefore, the persistence component should allow the
developer to use different data media to store the history. The event handlers of the
workflow engine or process will invoke the implementations of the Persistence
interface to store the logs. Two methods are defined in Persistence interface:
saveToStorage and retrieveFromStorage. Developers may implement the
policy for saving history (e.g., which data should be kept or which history should be
stored into which table in the database) in the saveToStorage method and
implement the way to retrieve the history from data storage in the
retrieveFromStorage method.

5 Implementation and Experimental Results

To evaluate the reusability of components and performance of the JOO-WfMS, we first
implemented layer one, followed by the second and third layers for several workflow
applications including workflow systems for school administration and reciprocal
E-learning. The user-interface protocol was implemented in JSP [25], which allows the
user to connect to the workflow engine using a Web browser. Our experiences in
implementing these applications demonstrated the ease of reusing the majority of the
components in the second layers, including execution code objects and transaction
objects.

Table 1. Times required to compute the compensation set and ECP (in seconds)

Failure name Time required
Deputy_Not_Available 0.0004

Need_More_Attachment 0.0002
Improper_Goods 0.0008

Budget_Overspend 0.0006
Bad_Quality 0.0014
Invalid_Item 0.0006

Table 2. Average time required to perform persistence to database and text (in seconds)

Time required The online system for ask for leave
Access Text

Process 0.0156 0.0015
Activity ID Activity name

A1 login 0.0172 0.001
A2 Fill_form 0.0157 0.0021
A3 Deputy_choice 0.014 0.001
A4 Deputy_agreement 0.0157 0.001
A5 Division_agreement 0.0156 0.0011
A6 Department_agreement 0.0141 0.002
A7 Principal_agreement 0.0140 0.002
A8 Success 0.0171 0.001
A9 Notsuccess 0.0203 0.0015
A10 Personnel_agreement 0.0141 0.001
F1 Deputy_Not_Available 0.0141 0.001

 Design of an Object-Oriented Workflow Management System 205

Experiments were performed to evaluate the performance of the JOO-WfMS. All the
experiments were run on a PC with a 2.4-GHz Pentium 4 processor, 512 MB of RAM,
the MS Windows 2000 operating system, and Java Development Kit 1.4.2_02. Table 1
lists the times required to compute the compensation set and ECP for a purchase
workflow, and Table 2 and Table 3 list the times for performing persistence in database
transaction and Java serialization, respectively. The experimental results demonstrate
that the performance is acceptable.

Table 3. Average time required to perform persistence by Java serialization (in seconds)

The online system for ask for leave File size (kB) Time required

Process 26 0.039
Activity ID Activity Name

A1 Login 9 0.0315
A2 Fill_form 13 0.0625
A3 Deputy_choice 19 0.0625
A4 Deputy_agreement 19 0.0625
A5 Division_agreement 19 0.0664
A6 Department_agreement 21 0.0705
A7 Principal_agreement 26 0.0708
A8 Success 29 0.0700
A9 Notsuccess 29 0.0725
A10 Personnel_agreement 25 0.0707
F1 Deputy_Not_Available 19 0.0235

6 Conclusions and Future Work

A WfMS with an architecture consisting of reusable components can be implemented
by the application of techniques such as encapsulation, inheritance, polymorphism, and
object composition of a traditional object-oriented programming language. However,
we found that it is necessary to employ other schemes to break the dependencies among
the components since these dependencies impede the reuse of the components. The
JOO-WfMS adopts the WfFH language and user communication components to
achieve this. The result is a system with fine-grained components, whose level of
reusability was found to be high.

Future work should aim at building an application-development environment with a
graphical user interface (GUI). Although the layered structure of the functional stack of
the JOO-WfMS separates the code implemented by the WfMS implementer (layer 1)
from the application designer of workflow (layers 2 and 3), a GUI development
environment should offer the application designer of the workflow with appropriate
methods to compose, reuse, and manage the fine-grained components.

References

1. D. Georgakopoulos, M. Hornick, and A. Shet. Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, Vol. 3, No. 2, 1995, Pages 119–153.

2. Shi Meilin, Yang Guangxin, Xiang Yong, and Wu Shangguang. Workflow Management
Systems: A Survery. International Conference on Communication Technology, 1998.

206 G.-H. Hwang, Y.-C. Lee, and S.-H. Chang

3. A. Elmagarmid, and W. Du. Workflow Management: State of the Art vs. State of the
Market. Proceedings of NATO Advanced Study Institute on Workflow Management
Systems, 1997.

4. Workflow Management Coalition. Workflow Reference Model. Workflow Management
Coalition Standard, WfMC-TC-1003, 1995.

5. Workflow Management Coalition. Workflow: An Introduction. Workflow Handbook, 2002.
6. Cox, B.: Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley,

Reading, MA, 1987.
7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, 1995..
8. M. Ader et al., "WooRKS, an Object Oriented Workflow System for Offices," Technical

Report, Bull S.A. (Paris), Technics en Automatitzacio d'Officines S.A. (Barcelona), Dep. of
Computer Science (University of Milan), Communication and Management Systems Unit
(Athens), 1994.

9. Sunil K. Sarin: "Object-Oriented Workflow Technology in InConcert". COMPCON 1996:
446-450.

10. Stefan Rausch-Schott. TRIGSflow—Workflow Management Based on Active
Object-Oriented Database Systems and Extended Transaction Mechanisms. PhD thesis,
Institute of Applied Computer Science, Johannes Kepler University, Linz, Austria, February
1997. Published by Trauner Verlag, Linz, ISBN 3-85320-991-2.

11. Manolescu, D.A. Micro-Workflow: A Workflow Architecture Supporting Compositional
Object-Oriented Software Development. Ph.D. Dissertation. Department of Computer
Science. University of Illinois at Urbana-Champaign, 2001. Ralph E. Johnson, Advisor.

12. Ralph E. Johnson and Vincent F. Russo. Reusing object -oriented designs. Technical Report
Technical Report UIUCDCS 91--1696, University of Illinois, May, 1991.

13. Workflow Management Coalition. Workflow Reference Model. Workflow Management
Coalition Standard, WfMC-TC-1003, 1995.

14. Object Management Group. Workflow management facility specification, 2000. OMG
Document Number formal/00-05-02. Available at http://www.omg.org.

15. G. H. Hwang, Y. C. Lee , and B. Y. Wu, “A Flexible Failure-recovery Model for Workflow
Management Systems,” International Journal of Cooperative Information Systems, Vol. 14,
No. 1 (2005) 1-24.

16. N.S. Glance, D.S. Pagani, and R. Pareschi. Generalized process structure grammars (GPSG)
for flexible representations of work. Proceedings of Conference on Computer Supported
Cooperative Work, 1996.

17. WFMC. Workflow Management Coalition Workflow Standard: Workflow Process
Definition Interface -- XML Process Definition Language (XPDL) (WFMC-TC-1025).
Technical report, Workflow Management Coalition, Lighthouse Point, Florida, USA, 2002.

18. Weimin Du, Jim Davis, and Ming-Chien Shan. Flexible Specification of Workflow
Compensation Scopes. ACM Group, Phoenix, Arizona, USA, 1997.

19. M. Kamath and K. Ramamrithan. Failure Handling and Coordinated Execution of
Concurrent Workflows. IEEE International Council for Open and Distance Education, 1998.

20. J. Eder and W. Liebhart. Workflow recovery. IEEE International Conference on
Cooperative Information Systems, 1996.

21. Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank
Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana Trickovic, and
Sanjiva Weerawarana. Business Process Execution language for Web Services, Version 1.1
dated may 5, 2003. http://www-106.ibm.com/developerworks/sebservices/library/ws-bpel.

 Design of an Object-Oriented Workflow Management System 207

22. David Chappell. Understanding BizTalk Server 2004. http://www.microsoft.com/
biztalk/evaluation /introduction.asp.

23. Yung-Chuan Lee, “Towards the Reusability of Object-Oriented Workflow Management
Systems.” Master Thesis, Advisor: Gwan-Hwan Hwang, Dept. Information and Computer
Education, National Taiwan Normal University, 2003.

24. Rex Hartson. User-interface management control and communication. IEEE Software,
pages 62–70, January 1989.

25. Sun Microsystem (2002): Inc. JSR-000053 Java™ Servlet 2.3 and JavaServer Pages™ 1.2
Specifications.

26. B. Kiepuszewski, A.H.M. ter Hofstede, W.M.P. van der Aalst, Fundamentals of Control
Flow in Workflows. QUT Technical report, FIT-TR-2002-03, Queensland University of
Technology, Brisbane, 2002.

27. J. L. Peterson, Petri net theory and the modelling of systems, Prentice Hall, 1981.
28. van der Aalst, W., and van Hee, K., Workflow Management: Models, Methods, and

Systems. The MIT Press. 368 pp., 2002. ISBN 0-262-01189-1.

Modeling the Behavior of Dispatching Rules in
Workflow Systems: A Statistical Approach

Gregório Baggio Tramontina� and Jacques Wainer

Universidade Estadual de Campinas, Instituto de Computação,
Campinas SP 13084-971, Brazil

Abstract. Using scheduling techniques to reorder work in workflow sys-
tems can improve the performance of the business processes enacted by
these systems. But this research area is still under-explored. This paper
presents preliminary results on ongoing research on the modeling of the
behavior of scheduling techniques in workflow systems using statistical
analysis. It discusses the the motivations for this approach and presents
a first workflow scenario to be studied. Simulations of the use of dis-
patching rules to minimize the percentage of late cases are performed.
The results are analyzed with statistical regression techniques to esti-
mate functions that describe the observed data and compose a model
to the behavior of the scheduling techniques. The model is evaluated
against new data that was not present in the first observed data and
the results show that it is feasible and could be used to assist systems
administrators in applying scheduling techniques to workflow systems.

1 Introduction

One of the goals of a workflow management system (WFMS) is to improve the
performance of the business processes it enacts. But one area in which they could
help bring an important improvement is under-explored: the ordering of the
execution of cases within the workflow itself. Most of today’s workflow systems
dispatch work on a first in first out (FIFO) basis. Some systems may also present
the set of all possible tasks to their potential executor, who chooses the task he
or she will perform next, which amounts to dispatching the work items at some
random order. The tasks may be annotated with a priority or urgency indicator,
but there is no guarantee that the executors will choose the high urgency tasks.

This paper describes preliminary results on ongoing research on applying
scheduling techniques to workflow systems. It describes the first statistical mod-
els to the behavior of scheduling techniques in dynamic workflow systems with
uncertainties in the processing times of the cases in its activities. These models
were obtained by the statistical analysis of the simulation of dispatching rules
in this workflow scenario. It is hoped that the models may be used as a guide to
the application of scheduling techniques in future WFMSs.

� Partially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo
- FAPESP, Brazil, Proc. 03/12742-0.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 208–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Modeling the Behavior of Dispatching Rules in Workflow Systems 209

This paper is organized as follows. Section 2 briefly discusses the application
of scheduling to workflow and the related literature, as well as the motivation
for this research. Section 3 describes the studied workflow scenario, the mod-
eling of the uncertainties present in it, and the metrics used to evaluate the
rules’ performance. Section 4 defines and describes the chosen dispatching rules.
Section 5 describes the analysis made to generate the statistical models.
Section 6 evaluates the model and finally Sec. 7 concludes the paper and points
to future work. Appendix A shows the numeric values that compose the model.

2 Applying Scheduling to Workflow

Applying scheduling techniques to workflow systems may seem intuitive, but it is
not. The problems in mapping a workflow case ordering into scheduling are many.
A list of a few of them is discussed in [1], which shows that there are great issues
to be handled in next research steps. Many authors also recognize that scheduling
and time issues are important in workflow systems and conducted research in
related areas such as time management and time constraints in workflow systems,
as well as business process management. Examples of research in these areas are
[2,3,4,5,6,7,8]. The scheduling literature, specifically, does not cover workflow
problems as a whole.

While studying the numerical results of the simulations, the authors noticed
that they followed (or at least could be approximated to) a normal distribution.
So, if there was a way to predict the means and standard deviations of these
distributions, the results could be reconstructed and serve as a prediction tool
to help in the application of scheduling techniques to workflow systems.

Progress has already been made in [1] with the study of the behavior of
common scheduling techniques in a simple workflow scenario. But its main ob-
jective is to compare the performance of other techniques to the FIFO rule to
show that performance improvements could be achieved by reordering work in
another fashion. Significant advances, however, can be made by developing a
model to the behavior of these techniques.

This paper analyzes a workflow scenario with uncertainties on the processing
times of the cases in the activities and dynamic behavior using simulation. The
uncertainties in these processing times means that one does not know their
exact values, and there is at maximum a good approximation to them. These
uncertainties are handled with the guess and solve approach described in [1].

3 The Example Scenario

The studied scenario consists of a sequence of three activities depicted in
Fig. 1. Each activity is assigned a time interval from which the real execu-
tion times of the cases in each of these activities are taken (from an uniform
distribution). These intervals are represented in Fig. 1 by the numbers above
the activities. They are equal for all activities, which means they have the same
means and standard deviations.

210 G.B. Tramontina and J. Wainer

Activity 1 Activity 2 Activity 3

10 50 10 50 10 50

Fig. 1. The workflow scenario described in this paper

In order to apply scheduling techniques in this scenario it is necessary to map
it to a scheduling problem. Due to its features, this workflow was mapped into
a flow shop scheduling problem. The flow shop is defined as a set J of n jobs
that have to be processed in one or more machines of a set M which contains m
machines. All jobs have the same route to follow within the machine set. Each
workflow activity is considered as a machine, so M = {1, 2, 3}, and each case is
a job that needs processing in all of these machines, in this order.

Every job j has a release date rj and a due date dj . Release dates are the
point in time when the jobs arrive at the system and are set so a certain machine
utilization ratio is achieved (this will receive more attention later). Due dates
are the point in time before which the jobs must be completed, and they are
set multiplying the total processing time of a job by a constant (the allowance
factor) and adding its release date to this value. In a mathematical formulation,
the job due date is given by dj = rj +A

∑m
i=1 pij , where pij is the processing time

of job j in machine i, A is the allowance factor, and m is the number of machines
in the system. The amount of time within which a job can be completed without
being late, calculated by dj − rj , is called the job’s allowance.

3.1 Workload Generation

The workload is a crucial aspect of a system. It is defined as the number of tasks
that are still being processed in the system [5,9]. The scenario’s workload was
generated using the model proposed by Mattfeld and Bierwirth [10]. This model
controls the inter-arrival times of the jobs to determine the pace at which they
arrive at the system. The mean inter-arrival time (λ) of the jobs is determined by
the mean job processing time (p) in the scenario, the number of machines in the
system (m) and a desired machine utilization rate (0 ≤ U ≤ 1; U = 0.75 means
a utilization rate of 75%). If p is given, then λ can be calculated by λ = p/(mU).
The inter-arrival times are then set using an exponential distribution with mean
λ. This paper considers 9 different utilization rates, namely, from 0.15 to 0.95
with increments of 0.1, varying from lightly to heavily loaded systems.

3.2 Optimization Criteria

The performance of the scheduling techniques must be evaluated quantitatively.
The optimization criteria, or objective function, analyzed in this paper, is the
mean number of late jobs (cases) in the system that each rule “produces” when it
is used to reorder the work in the system. This metric is defined straightforwardly
as nt/n, where nt is the number of late jobs in the system and n is the total

Modeling the Behavior of Dispatching Rules in Workflow Systems 211

number of jobs in the same system. It is a very important measure since late
cases can incur penalties to the company and decrease customer satisfaction.

Guess and Solve Approach. The uncertainties in the jobs’ processing times
can be modeled by the guess and solve approach described in [1]. It is assumed
that the system has a guesser capable of providing a prediction p′ij of the process-
ing times pij of the jobs with a maximum error fp. It means that the property

fp ≥
∣∣∣ p′

ij−pij

pij

∣∣∣ holds for every prediction. For our simulations, the chosen values
of fp were 0.10, 0.20, and 0.30, meaning a 10%, 20% and 30% error respectively.

The guesser component is an abstraction of a number of prediction techniques
that can be used such as relying on someone’s experience, using machine learning,
or statistical techniques based on past cases. Once the execution times and routes
are guessed, one can solve the resulting deterministic problem.

4 Dispatching Rules

Dispatching rules (or priority rules) guide the selection of the jobs locally in the
machines. Whenever a machine becomes free, the job in its queue that best fits
the rule’s criteria is processed. The authors used the same set of rules from [1]
with the addition of the SPT rule. These rules are explained next.

1. FIFO (First In First Out): selects the jobs in the order of their arrival times;
very simple and robust;

2. SIRO (Service In Random Order): selects the jobs randomly, which repre-
sents the situation where the workflow cases are presented to their poten-
tial executors who choose which item they will work on based on personal
criteria;

3. EDD (Earliest Due Date): selects the job with the nearest due date;
4. SPT (Shortest Processing Time): selects the job with the smallest processing

time pij in the current machine;

The SPT was the only rule to be used with the guess and solve because
it schedules the jobs based on their processing times, which are only available
through the guesser. In this paper, “SPT-PURE” refers to the SPT rule used
with a 0%-error guesser. SPT-10, SPT-20 and SPT-30 refer to SPT used with a
10%-, a 20%-, and a 30%-error-guesser, respectively.

5 Finding a Feasible Approximation

The first step to find a feasible approximation to the mean percentage of late jobs
was to study the behavior of the selected rules according to the mean percentage
of late jobs achieved by each of them in the proposed scenario. There are two
main variables to be studied: the utilization rate (U) and the allowance factor
(A). Greater utilization rates lead to a higher percentage of late jobs, while
greater allowances give more time for the jobs to be completed and hence can
decrease the late jobs.

212 G.B. Tramontina and J. Wainer

100,00

80,00

60,00

40,00

20,00

0,00

1,000,800,600,400,20

Utilization rate

Cubic
Observed

A: 2

(a)

8,00

6,00

4,00

2,00

0,00

1,000,800,600,400,20

Utilization rate

Cubic
Observed

A: 22

(b)

Fig. 2. Observed data and regression result for FIFO with A = 2 and A = 22

For each allowance factor considered in this paper, all utilization scenarios
were simulated with 100 repetitions of 100 jobs for each pair allowance fac-
tor/utilization rate. Since there are many graphics and analysis to be shown, we
will concentrate on the analysis of FIFO. The procedures adopted for this rule
are repeated with the other rules.

The mean values achieved by FIFO for all utilization rates and allowance
factors of 2 and 22 are shown in Fig. 2-(a) and Fig. 2-(b), respectively, as dots in
the graphics. The Y-axis of the figures represent the mean percentage of late jobs
achieved by FIFO for the utilization rates represented in X-axis. A statistical
regression to estimate a function that represented the observed values was made.
The regression showed that the cubic function was the best representative for the
data. The cubic curve can be described mathematically by the expression y(x) =
c0 + c1x+ c2x

2 + c3x
3, where c0, c1, c2, and c3 are called the “coefficients” of the

equation. The job of the regression is to find such coefficients so that the function
adjusts to the observed data. The regression procedure was then repeated for all
curves of all allowance factors with the cubic function. As examples, the adjusted
curves for the observed data in Fig. 2 are also plotted on the graphics. After the
regression, a matrix of coefficients was available for each rule for all values of A.
These coefficients can be found in appendix A.

The next step was to find a way to predict the coefficients of the func-
tions for an arbitrary value of allowance factor. The function that predicted the
mean percentage of late jobs would then be a two-variable function of the form
y(U, A) = c0(A)+ c1(A)U + c2(A)U2 + c3(A)U3, where the coefficients would be
themselves functions of A. Many approaches were tested but the best one was to
keep the coefficients in a matrix where one could retrieve them whenever needed,
and when the coefficient ci(a) for an allowance a not present in the matrix was
needed, one could infer it with a linear interpolation of the coefficients for the
“nearest” allowance factors directly above and below a (a+ and a−, respectively).
This operation can be described by ci(a) = ci(a−)+ ((ci(a+)− ci(a−))(a−a−)).

6 Model Evaluation

The model was evaluated against a set of data that was not present in the set
used to generate the model. For that, new simulations with new values of A

Modeling the Behavior of Dispatching Rules in Workflow Systems 213

Table 1. Sum of errors for all rules with the new allowance factors

A FIFO SIRO EDD SPT-PURE SPT-10 SPT-20 SPT-30

1.5 35.13 27.26 36.15 62.66 61.17 60.66 51.95
3.5 60.41 38.75 60.41 17.85 18.54 18.10 16.54
5.5 48.75 28.74 48.60 14.34 14.29 14.26 14.05
7.5 30.60 21.16 31.77 14.47 14.78 13.72 15.92
9.5 19.80 16.80 19.95 11.85 12.68 12.58 12.94
11.5 12.29 12.35 11.89 9.88 9.14 10.32 12.01
13.5 10.40 5.70 13.04 8.14 7.32 7.11 9.82
15.5 9.35 7.03 11.02 5.71 5.93 5.39 6.39
17.5 6.56 4.83 5.10 8.72 7.60 12.72 7.16
19.5 4.66 4.36 3.53 2.70 4.77 2.83 3.41
21.5 1.39 3.65 1.12 3.59 4.04 4.06 4.16

were performed and the prediction model was implemented in a C program.
The results predicted by the program were then compared those obtained by
simulation. This comparison is summarized in Tab. 1.

Table 1 shows the sum of the absolute values of the differences between the
real and predicted values for the mean percentage of late jobs. Each cell of
Tab. 1 represents the sum of all prediction errors of all utilization rates for each
new value of A, that is,

∑
for all U |simul(U, A) − pred(U, A)|. All values are in

percentual points. Notice that as the allowance gets larger, the errors decrease.
Also, the errors for these higher allowances are relatively low compared to the
amount of uncertainty embedded in the system. A deeper study showed that they
concentrate on the region where 0.25 ≤ U ≤ 0.55, being lower when U > 0.65.
Since workflows are expected to face utilization rates higher than 0.65, the model
shows itself feasible to predict the mean percentage of late jobs for the analyzed
rules. In a broader comparison, the mean error for each allowance factor can be
measured by dividing the numbers in Tab. 1 by the number of utilization rates
analyzed (9). For example, for SPT-PURE with an allowance factor of 11.5, the
mean error is 1.097 percentual points up or down, a quite feasible value.

7 Conclusion and Future Work

The modeling of the performance of the scheduling techniques in workflow sys-
tems is a challenging task. The uncertainty embedded in these systems makes it
harder to predict their behavior. But it also represents a possibility of improve-
ment to the business processes enacted by the WFMSs. The results in this work
are the first step to this modeling. They present a way to predict the mean per-
centage of late jobs that a system will have when using one of the rules studied
here. This is an important feature to help systems administrators on evaluating
the different types of benefits (and drawbacks) each technique can bring.

Practical analysis shows that SPT is the best among the chosen rules to
minimize the percentage of late cases in the studied scenario. The mean values

214 G.B. Tramontina and J. Wainer

achieved by this rule are lower than the values achieved by the other rules in
almost all cases. EDD becomes a better choice only when the allowance is grater
than 16. This kind of information is also relevant for it helps the choice of the
best scheduling technique.

This research, however, is ongoing and there is still progress to be made in
the area. This includes the analysis of different configuration of sequences of
activities (like different time intervals for the activities), the study of the other
basic workflow patterns (the AND-split, OR-split, and loops, as defined by [11]),
the inclusion of other scheduling techniques (like other dispatching rules and
genetic algorithms, among others), and the conception of a complete model to
workflow systems.

References

1. Tramontina, G.B., Wainer, J., Ellis, C.: Applying scheduling techniques to min-
imize the number of late jobs in workflow systems. In: Proceedings of the 2004
ACM Symposium on Applied Computing, New York, NY, USA, ACM Press (2004)
1396–1403

2. Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems.
Distributed and Parallel Databases 11 (2002) 269–306

3. Eder, J., Panagos, E., Pozewaunig, H., Rabinovich, M.: Time management in
workflow systems. In: Proceedings of the BIS’99 3rd International Conference on
Business Information Systems, Springer-Verlag (1999) 286–300

4. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems.
In: Proceedings of the 11th International Conference on Advanced Information
Systems Engineering, Springer-Verlag (1999)

5. Laguna, M., Marklund, J.: Business Process Modeling, Simulation and Design.
Prentice Hall (2004)

6. Senkul, P., Kifer, M., Toroslu., I.H.: A logical framework for scheduling workflows
under resource allocation constraints. In: Proceedings of the 28th International
Conference on Very Large Data Bases. (2002) 694–705

7. Senkul, P., Toroslu, I.: An architecture for workflow scheduling under resource
allocation constraints. Information Systems 30 (2005) 399–422

8. Zhao, J.L., Stohr, E.A.: Temporal workflow management in a claim handling
system. In: Proceedings of the international joint conference on Work activities
coordination and collaboration, New York, NY, USA, ACM Press (1999) 187–195

9. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice Hall, Engle-
wood Cliffs, New Jersey (1995)

10. Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation 7 (1999) 1–17

11. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods and
Systems. The MIT Press - Massachussets Institute of Technology (2002)

A Table of Coefficients for the Rules

This appendix shows the tables of the coefficients found in the regression pro-
cedure for the rules. The decimal precision of these numbers was reduced so the
tables could fit in the paper. But the real calculations are done with all possible
precision.

Modeling the Behavior of Dispatching Rules in Workflow Systems 215

Table 2. Coefficients for FIFO, SIRO, and EDD

A FIFO SIRO EDD

A c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3

1 -70.92 750.84 -1077.07 499.84 -65.77 675.79 -926.86 415.49 -70.61 749.88 -1076.35 499.87
2 -85.15 612.10 -666.89 230.25 -61.16 432.13 -389.77 100.08 -84.79 603.47 -646.64 217.63
3 -54.81 329.41 -120.54 -74.78 -36.97 212.69 1.75 -106.16 -53.57 317.76 -99.24 -86.25
4 -32.18 136.04 223.94 -254.92 -22.72 92.13 198.56 -202.63 -30.70 124.12 244.12 -265.42
5 -13.51 -14.24 483.21 -389.24 -11.48 5.58 332.80 -266.79 -11.57 -29.35 507.78 -401.54
6 2.07 -129.87 659.06 -468.69 -4.35 -45.98 399.42 -292.95 4.55 -149.88 694.67 -488.46
7 13.87 -214.43 775.77 -516.53 2.76 -97.43 467.62 -319.36 15.72 -228.05 795.77 -526.16
8 17.95 -233.88 765.00 -492.95 4.40 -102.59 447.00 -297.31 19.88 -247.70 783.54 -500.75
9 24.93 -275.91 797.75 -493.44 8.01 -125.74 468.30 -301.82 26.81 -288.21 810.09 -496.36
10 25.99 -272.86 748.38 -450.66 9.28 -131.48 457.36 -288.64 27.09 -278.51 747.53 -446.38
12 24.59 -235.87 585.14 -327.04 12.70 -146.52 437.95 -261.97 25.59 -238.77 574.13 -315.24
13 22.77 -211.89 506.80 -273.00 11.71 -134.27 399.64 -237.01 22.79 -206.22 476.41 -249.27
14 19.96 -176.85 396.59 -197.15 14.36 -149.13 404.62 -232.21 19.14 -165.07 356.67 -169.50
15 16.14 -141.61 312.11 -148.99 11.85 -125.94 349.31 -200.17 14.24 -120.00 248.27 -105.62
16 10.91 -92.85 192.26 -75.80 12.22 -124.00 327.27 -183.05 7.89 -61.34 105.94 -18.93
17 8.15 -65.90 123.90 -35.26 11.45 -112.78 288.41 -156.49 3.02 -18.22 7.17 37.10
18 2.90 -19.18 15.33 28.76 9.34 -91.08 228.77 -117.72 -3.08 33.91 -107.80 101.61
19 1.09 -4.19 -14.70 40.69 7.59 -74.96 190.66 -97.19 -4.09 40.54 -113.69 94.34
20 -0.13 5.61 -32.12 43.37 7.67 -72.42 174.70 -87.61 -3.01 28.26 -73.87 56.60
21 -0.11 4.19 -23.77 31.85 6.84 - 63.47 150.49 -73.86 -1.31 12.04 -30.70 22.87
22 -1.09 11.98 -38.38 36.73 5.78 -53.12 124.10 -59.43 -0.43 3.90 -9.84 7.25

Table 3. Coefficients for SPT-PURE, SPT-10, SPT-20, and SPT-30

A SPT-PURE SPT-10 SPT-20 SPT-30

A c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3

1 -53.3 571.1 -767.6 342.2 -51.5 553.9 -732.7 322.3 -52.2 559.0 -741.3 327.2 -47.8 537.9 -763.7 360.9
2 -27.0 174.5 -38.4 -40.8 -27.0 175.4 -38.5 -41.5 -26.5 173.6 -36.7 -41.3 -27.0 184.1 -72.8 -15.6
3 -12.7 42.7 195.1 -164.4 -11.7 36.6 207.8 -171.6 -12.0 40.3 197.5 -164.0 -13.8 57.7 163.1 -144.7
4 -7.8 1.9 254.5 -190.7 -6.8 -6.1 270.9 -199.0 -8.2 5.2 249.6 -187.2 -8.6 8.6 244.2 -184.4
5 -2.8 -37.8 317.0 -221.3 -2.8 -37.5 317.2 -221.5 -3.5 -32.5 310.5 -218.7 -5.1 -19.9 290.6 -208.8
6 0.2 -62.1 353.1 -238.3 0.6 -65.2 360.2 -242.2 0.1 -61.4 354.9 -240.0 -1.5 -47.7 332.3 -228.1
7 2.8 -80.1 371.6 -243.1 3.1 -82.4 376.1 -245.2 2.6 -78.4 369.9 -241.8 1.1 -68.7 360.9 -240.0
8 3.1 -78.9 357.0 -231.1 3.0 -78.5 357.4 -231.6 2.5 -74.1 348.9 -226.2 1.2 -66.7 345.7 -228.3
9 6.2 -100.9 386.8 -244.6 5.6 -97.2 384.0 -244.6 5.3 -93.7 373.7 -236.8 3.9 -84.9 368.5 -237.5
10 5.7 -95.3 366.6 -231.1 5.4 -93.6 363.9 -229.6 5.0 -90.6 359.8 -228.0 4.1 -86.5 362.6 -232.2
11 5.8 -93.6 349.7 -217.5 5.3 -90.0 344.0 -215.1 5.8 -94.8 357.9 -224.7 4.4 -86.2 351.8 -223.8
12 7.0 -98.5 342.1 -209.1 6.5 -95.3 338.6 -208.4 6.6 -96.4 342.0 -210.5 6.0 -96.3 359.9 -226.8
13 7.0 -102.6 341.6 -208.1 6.8 -95.4 330.2 -203.0 6.7 -94.4 329.9 -202.6 6.6 -99.0 356.9 -224.0
14 9.4 -110.8 341.0 -203.2 8.5 -104.7 332.7 -200.2 8.6 -106.7 337.6 -203.4 8.3 -108.4 361.6 -222.9
15 6.5 -85.7 283.3 -170.8 5.6 -79.0 275.1 -168.6 6.2 -83.9 286.4 -174.7 6.9 -95.8 331.8 -208.0
16 7.4 -88.7 273.7 -162.7 6.8 -83.6 265.4 -158.3 6.3 -80.7 262.6 -157.1 7.2 -93.3 305.7 -186.6
17 6.8 -80.2 243.2 -142.9 6.0 -74.4 235.6 -139.6 6.3 -80.7 262.6 -157.1 7.5 -92.1 289.1 -173.8
18 6.8 -80.2 243.2 -142.9 4.3 -56.1 183.9 -106.7 6.3 -78.5 247.5 -147.5 5.7 -73.6 238.1 -141.2
19 3.2 -44.2 147.7 -85.0 2.9 -43.3 152.8 -90.5 3.0 -44.3 156.2 -91.8 4.8 -63.9 211.4 -126.5
20 3.5 -43.0 133.7 -76.5 3.2 -41.7 136.0 -78.7 3.6 -45.8 147.0 -85.52 5.1 -61.6 190.1 -111.2
21 3.2 -37.1 111.5 -62.7 3.2 -39.0 121.9 -70.2 2.9 -36.5 117.0 -66.7 4.8 -56.6 171.8 -100.4
22 1.9 -25.3 80.6 -45.0 1.7 -25.4 87.8 -50.6 2.2 -29.8 97.8 -56.3 2.7 -35.7 117.0 -66.2

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 216 – 231, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Collective Knowledge Recall: Benefits and Drawbacks

Naiana Carminatti, Marcos R.S. Borges, and José Orlando Gomes

Graduate Program in Informatics – NCE & IM
Federal University of Rio de Janeiro

naiana@posgrad.nce.ufrj.br,
{mborges, joseorlando}@nce.ufrj.br

Abstract. Organizations frequently need to recall past events that, for some
reason, were not adequately documented when they occurred. The successful
reconstitution of past events depends on several variables, such as how long ago
the event occurred, and whether key people are still in the organization. It also
depends on the supporting process. This paper examines three knowledge recall
methods and compares them in a controlled experiment. A group storytelling
approach is used in two of the methods, one of which is supported by
technology. The results obtained favor the group approach, but the advantages
of technology support are not conclusive. The paper also evaluates the benefits
and the drawbacks of using a supporting technology.

1 Introduction

Knowledge is the most valuable asset in an organization. The appropriate
management of this knowledge can make all the difference to some organizations.
Organizations frequently need to recall past events that, for some reason, were not
adequately documented when they occurred. To recall the relevant knowledge,
organizations must rely on the people who witnessed the events or played a role in
them. However, this is not an easy task. Incomplete information caused by lapses in
memory and the lack of key facts are commonplace in the retrieval process.

The reconstitution of past events can be considered to be a transformation of tacit
knowledge into formal knowledge. Its success depends on several variables, such as
how long ago the event occurred, and whether key people are still in the organization.
The more people there are to contribute, the higher the likelihood of completeness and
accuracy. On the other hand, the more people there are, the greater the potential for
controversy.

Telling stories is a natural way of transmitting tacit knowledge among individuals,
groups, and organizations. When a story is told, the author’s intention is to transmit
knowledge to the listener. Stories are great vehicles for wrapping together many
elements of knowledge such as: explicit and tacit knowledge, information and
emotion, the core and the context [1]. Stories are a very powerful way to represent
complex, multi-dimensional concepts. While a certain amount of knowledge can be
reflected as information, stories hold the key to unlocking the vital knowledge, which
remains beyond the reach of codified information [2].

 Collective Knowledge Recall: Benefits and Drawbacks 217

Several approaches exist in the literature for the collective reconstruction of stories
[3, 4, 5, 6, 7]. Some are based on interviews performed by a facilitator. Others use
group dynamics in order to benefit from the group synergy, although there is some
controversy as to whether groups perform better than individuals due to the “process
losses” inherent in face-to-face settings [8]. Researchers have recently begun to
examine the effects of computer-mediated communication (CMC) on group dynamics
and have concluded that process losses can be overcome to some extent [9].

This paper extends prior research by analyzing, through experiments, the beneficial
effects that group work can provide to knowledge recall. We compare the three main
methods for knowledge recall: individual interviews, group dynamics in face-to-face
settings, and group dynamics supported by a CMC tool. For the second and third
method, we employ a technique that was developed to support the collective
reconstruction of past events, which is known as group storytelling [10, 11, 12, 13].
This study builds from the hypothesis that groups that use the group storytelling
approach perform better than groups that use individual interviews. We also examine
the influence of a CMC tool on the group storytelling approach.

To perform the comparison we need a real situation experienced by a group of
individuals who agree to serve as storytellers. In our experiment, the stories were picked
from commercial motion pictures and were unknown by all the participants. Each film
was divided into parts, which were selectively shown to the participants so that nobody
had the entire view of the story. The task was to rebuild the story with their partial
knowledge of the events, using any of the three methods for knowledge recall.

Although the experiment made use of fictitious stories, the results can be
generalized to real stories because the development is very similar. People have a
partial view of the events and they will only be able to reconstruct the entire story by
grouping their pieces together. If our hypothesis holds, we believe the group
storytelling approach can be used to recall past decisions and project stories in
organizations [12].

The paper is divided as follows: Section 2 reviews the advantages and the
drawbacks of collective knowledge recall. Section 3 describes the group storytelling
approach, and Section 4 shows the supporting technology. Section 5 describes the
planning and the implementation of the experiment, and Section 6 discusses the
results. Section 7 concludes the paper.

2 Collective Knowledge Recall

Knowledge is the most valuable asset in an organization [14]. The appropriate
management of this knowledge can make all the difference to some organizations
[15]. The importance of the knowledge component has motivated companies to
develop practices to facilitate its administration. As a result, Knowledge Management
has been adopted in wide scale, supporting the definition of procedures, practices and
technological tools that aim at capturing, storing and disseminating the knowledge in
the organization.

Knowledge exists in both the mind of employees and in documents. Many
organizations assign high priority to documentation but it is not correct to say that the
most important type of knowledge is stored in documents [16]. The experience of the

218 N. Carminatti, M.R.S. Borges, and J.O. Gomes

organization members, their ideas and decisions are also part of the organization
knowledge. Nonaka and Takeuchi define these elements as tacit knowledge [17]. It
consists of technical abilities: mental models, faiths and ingrained perspectives not
subjected to the easy manifestation. It is opposite to the explicit knowledge, which is
simple to disseminate and share.

Both in tacit and in explicit knowledge, some sort of recall process is required
when access to this knowledge is required. When the knowledge is tacit (i.e., it is in
the mind of the employees), the knowledge recall process is complex and will depend
on a collaborative attitude from the knowledge holders. One of the main challenges is
to capture and to maintain the tacit knowledge because it is not logical and strictly
documented. For tacit knowledge to be communicated it must be converted into
elements that anyone can understand [16]. One possible approach is the
transformation of tacit into explicit knowledge. This process is called externalization.
In spite of the benefits, the process of converting tacit into explicit knowledge is
expensive and complicated.

With today’s level of specialization, knowledge rarely resides in a single mind. It is
only when it is collected together from various sources that it can make any sense. In
a different context, globalization has been forcing companies to maintain a presence
in several parts of the world and to cooperate with each other. Knowledge in this case
is not only distributed among several individuals, but these individuals might also be
geographically distributed. More importantly, they may even be members of different
organizations. As a result, most activities require some sort of teamwork, and
knowledge should be captured and dealt with collectively. Although this imposes
additional difficulty on individual work, it also provides some benefits.

When a group of people is involved in a knowledge recall task, they can work in at
least two different modes. They can work individually and group their results as they
progress, or they can work together with a single group result throughout the process.
The knowledge generated by a collective process is usually richer than that generated
by the same individuals working separately [18]. A collective process discloses
different points of view, is stimulating and dynamic, and creates synergy among
participants. To sum up, a collective process is expected to create more knowledge
than the sum of individual processes. The probability of completeness and precision is
greater if more people contribute. On the other hand, there is also more potential for
controversy if there is a greater number of contributions. This is particularly true
when group members have to recall facts from the past in which they had a partial
role; for example, the documentation of a finished project.

The knowledge generated at the end of a collective recall process results from the
combination of the skills acquired by each participant during the task execution. The
knowledge can contain many more valuable details if more than one person
participates in its creation since an activity normally involves more than one
individual. However, just as any other group work, the collective capture of
knowledge presents some difficulties that do not exist in individual work. In general,
these difficulties have social or cultural causes, such as resistance to sharing
knowledge, relationship difficulties, conflicts and quarrels, constraints, etc.

To assess the participant’s understanding of the result generated by collective
knowledge recall, we can make use of Bloom’s taxonomy [19]. This taxonomy has
been widely used in educational environments to help to evaluate the apprentice’s

 Collective Knowledge Recall: Benefits and Drawbacks 219

understanding of the concept being taught. We believe that with some adaptation, the
taxonomy can also be used to represent the level of understanding of the knowledge
recall process. The taxonomy is reproduced in the first column of Table 1. We added
an extra row to represent the group synergy. In the second column we evaluated the
collective knowledge construction when using a group storytelling approach.

Table 1. Bloom’s Taxonomy applied to collective knowledge construction using a group
storytelling approach

Bloom’s Taxonomy of Cognitive
Domains

Instantiation of the Taxonomy to
Group Storytelling

KNOWLEDGE
Recall of previous knowledge

Be able to recall the relevant facts from
what they watched or witnessed

COMPREHENSION
Understanding knowledge. Explaining
and translating one form into another

Be able to represent their stories in the
template provided. Translate from one
form to another (images to words)

APPLICATION
The use of knowledge to identify and
solve new problems

Use stories to reach conclusions or to
identify gaps between stories or
misunderstandings of presented stories

ANALYSIS
The identification of others’
knowledge and the relationship
between different pieces of
knowledge

Filter the relevant part of other stories
and establish a network of stories to form
a single story or a group of stories

SYNTHESIS
Rearranging previous knowledge into
new patterns or structures

Rearrange or rewrite their own stories in
response to others’ questions or remarks

EVALUATION
Determining how useful or valuable
the knowledge is for a given purpose
(suitability)

Evaluate stories and decide the value of a
story to the main stories

GROUP SYNERGY
Assessing and combining knowledge
from others to create new knowledge

Recall new stories after being presented
other members’ stories. Filling gaps
between stories

3 Group Storytelling

“A story can be defined as a narration of a chain of events that is told or written in
prose or verse. The term narration comes from the Latin narrere, meaning to pass on
knowledge” [11]. Storytelling can be considered to be as old as the human being,
even considering that at the beginning of the human race, stories were of the most
rudimentary form, such as the Rosetta Stone. The Egyptians registered their stories in
illustrations. Indians have used oral storytelling as the main technique for knowledge
propagation through the generations. The invention of the printing press made story
dissemination widely available to many people at once, as copying material became
much simpler [12].

220 N. Carminatti, M.R.S. Borges, and J.O. Gomes

Before a story can serve as knowledge transfer, it must be constructed or
assembled. The assembly of a real story is the process of recalling knowledge from
past events that have occurred. This can be an individual or a group task depending on
whether the story fragments are remembered by one or more individuals. In the latter
case, members of a group contribute to creating a story collectively, synchronously or
asynchronously, in the same place or in a different place. This technique is called
group storytelling.

Group storytelling is more appropriate than individual storytelling in contexts
where there are several people involved in the execution of a task. A story that is told
from several perspectives may bring out interpersonal and interaction complexities
such as negotiation, communication, and coordination needs, which would not be
manifested in a story told from a single perspective [18].

The idea of using a group storytelling mechanism is not a simple one. It depends on
the existence of a Knowledge Management culture as well as that of a group culture. It
also requires technological support. In Table 1, we present the instantiation of Bloom’s
taxonomy [19] to collective knowledge construction using group storytelling. This will
help to understand the goals that can possibly be achieved with the group storytelling
approach. We have added group synergy as one of the additional criteria because we
wanted to compare the method with individual interviews.

There are several ways of registering a story. Among them are texts, photos, audio,
video, or a combination of them. “Video and audio help to bring ideas to life by
adding more non-text clues, including body language, graphic illustrations, and sound
effects or music. This helps activate many more parts of the brain than text alone,
increasing most people’s ability to pay attention and to recall what they have heard. It
also draws in people who are not as comfortable in purely text-based
communications” [2].

Instead of using simple text media, it is better to use various technologies (like
multimedia). However, these technologies require richer production as well as skills
that people generally do not have, like the definition of a good script, a good voice, a
good characterization, and high quality pictures. [10].

The storytelling approach has been used in many works. Schäfer, Valle and Prinz
[13] applied the group storytelling to create team awareness. The story in this case
was a collection of annotated photos. They developed the PhotoStory application to
generate and maintain a story through a sequel of pictures with subtitles. Participants
should first set up a storyline. Then, they feed the story elements with annotated
digital pictures. In their work, however, they aimed to create a story, which is
different from the focus of our paper that aims at the recalling process.

4 The TellStory Groupware

The growth of cooperative work in organizations has stimulated the development of
groupware, a type of support tool used by teams. It facilitates several activities that
are traditionally performed in group work, such as coordination, communication,
awareness and level of collaboration. In their research, Perret, Borges, and Santoro
[12] argue that a consolidated system that gives support to the collaborative
construction of stories does not yet exist in the literature.

 Collective Knowledge Recall: Benefits and Drawbacks 221

Fig. 1. Inserting an event. The story is made up of events that are inserted by each participant.
Besides the event title and description, the participant can also add some descriptors such as
place, characters involved, etc.

There are some Computer-Supported Collaborative Learning environments, which
stimulate collective knowledge building, and there are also some Collaborative
Authoring Tools. Based on some of the characteristics of these systems and the
analysis of narratives and journalistic texts, Perret [20] has developed a groupware
application called TellStory, which supports the group storytelling method. It is a web
application, which offers text media and is implemented on the Zope platform [21].

The tool allows a group to tell a story through the contributions of each one of the
members. Any registered member of TellStory can create a story and invite new
participants. An individual can participate in the story by performing one of the
following roles: (i) moderator: the creator of the story and the person responsible for
the coordination of the actions inside of the story; (ii) user: contributor to the story;
(iii) teller: the person that will write the final text; (iv) reviewer: the person who
endorses the story built by the teller; and, (v) commentator: the person responsible for
the identification of tacit knowledge externalization of the story. More than one
person can assume the same role, and each role can be assumed by several people.
The user role is common to all registered members.

222 N. Carminatti, M.R.S. Borges, and J.O. Gomes

Fig. 2. Flow of a story. The participants decide on the chronological position of the event in
relation to those already in the story when inserting the event. They can also change the
position later on.

According to Holloway, a story is a sequence of events that are tied to each other
by a full conductive thread of meaning, built by a causality relationship between a fact
and its successor [22]. TellStory takes advantage of that definition to facilitate the
construction of the story by a group. Each user can insert an event which he/she
remembers (Figure 1), that is, a fact that happened.

The possible actions throughout the construction of the story are: inclusion,
edition, exclusion, union, and fragmentation of events. The union of events occurs
when two events can be considered as a single one; the fragmentation of an event
occurs when an event is divided into two. These can be performed whenever
necessary. The criteria that indicate whether a fact is an event, a sub-event, or a
collection of events do not need to be explicitly defined by the participants. This
makes the tool a flexible environment, where people can express themselves freely.

The events can be introduced in random order because they can be treated later,
during coordination activities. At this point, they organize the events, discuss them,
and vote to decide which order will be chosen. Figure 2 shows the flow of events: to
the right, the events appear in a column in the corresponding order. If a modification
of the events in the story occurs, the numbering of the events changes.

Once the users have input the events, they can discuss them with each other
through comments in a forum format. They can eventually make decisions on certain
subjects through voting that is organized by the moderator. One example of subject
discussion is event truthfulness. If there is no consensus about the existence of a
certain fact, the tool allows the story to have two versions, one that considers the

 Collective Knowledge Recall: Benefits and Drawbacks 223

hypothesis of the event to have happened and the other that considers it not to have
happened. However, the duplicity of versions should only be used if there is not a
majority consensus on decisions related to a subject.

One of the most important benefits of TellStory is that it offers the possibility of
using a template to address the elaboration of the story through the typical features of
a narrative structure. For example, the template shows the users that an event should
always have a cause and effect relationship with its successor or predecessor,
according to the causality principle. The template also has a module in which the
users can define and configure the characters, an activity which greatly aids
externalization. The template works as a guide for the tellers, stimulating their
memories and helping them to better structure their thoughts. When the group
understands and the story already provides a sufficient flow of events, the moderator
can conclude the task. At this point, the teller gathers the events and writes a final text
based on the sequence. The reviewer corrects casual mistakes and has the authority to
make any changes to arrange the logic of the final text. Finally, the commentator
searches for tacit elements that can be identified in the story, which are registered in a
module that is included in the final text.

5 Planning the Experiment

The goal of the experiment was to compare different alternatives for knowledge recall
and to evaluate the benefits of a supporting technology for the group storytelling
technique. The results should provide a preliminarily evaluation of issues that we
judged important to the design of a knowledge recall procedure. To achieve this, we
compared the results obtained with each approach. The first insight was whether the
group storytelling approach generates more commitment from the participants than
the interview approach. We assigned some questions in the questionnaire related to
the participants’ satisfaction with the dynamics of the interaction. We compared the
answers from the same group and also the answers from different groups using
different approaches.

The second insight was the results obtained by each approach in terms of
completeness and detailing level of the stories generated. We looked into the contents
of each story and measured how far or close they were to the real story. We also
looked into the stories generated from the same movie and checked for the
differences. We were particularly interested in examining the knowledge produced by
the combination of individual knowledge from different participants. In other words,
we intend to assess the combination phase in Nonaka’s knowledge transfer spiral [17].

Perret used the need for recalling a documentation of a complex organizational
process that took place in an organization in Rio de Janeiro to test the TellStory tool
[20]. This experiment, however, would not serve our purpose; we needed the same
story to be recalled using different techniques and by different groups of people.

We opted to use two story recall techniques: one based on interviews and another
based on the group storytelling approach. The first one is very common in
organizations and consists of an interviewer asking questions to an interlocutor and
compiling the answers to generate the story. In the group storytelling approach,
members of a group contribute to the recall of a story collectively. The group

224 N. Carminatti, M.R.S. Borges, and J.O. Gomes

storytelling technique was carried out with and without a supporting technology. The
supporting technology adopted was the web tool, TellStory [20], presented in the
previous section.

Two groups of volunteers were prepared, each of which had four students from
Computer Science and one professor acting as a moderator. The moderator is the
person responsible for coordinating the techniques of stories recall. He did not watch
the films and did not know their stories.

The task assigned to each group was the recall of the story told in the feature films
(which had not been seen by the participants) using partial knowledge of their events.
Each film was divided into parts ranging from five to twenty minutes, which were
selectively shown to the participants so that nobody had the entire view of the story.

These parts had been previously selected by the coordinator of the experiment in
order to create as much discussion as possible. Figure 3 shows the parts of the film
watched by each one of the participants.

The experiment was divided into four parts. In Parts 1 and 2, groups A and B
watched the same pieces of movie 1, but used different techniques to recall the story
of the movie (group A used interviews; group B used the group storytelling technique
without the tool). In Parts 3 and 4, the same groups watched the same pieces of
another film. Both groups used the group storytelling technique, but group B used the
TellStory tool, which they had been trained to use before the experiment. Table 2
presents a summary of the experiment.

1
Participants 2

3
4

1
Participants 2

3
4

5 15 30 60 90

Movie 2: I accuse (90 min)

Movie 1: I am Sam (132 min)

5 13515 12030 60 90

Fig. 3. Parts of the movies watched by participants. Some parts were watched by all, some by
none; and some by a sub-group of the participants.

Table 2. Parts of the Experiment – Planning each evaluation

View
movie 1

View
movie 2 Interviews

Group
storytelling

Group
storytelling +

TellStory
Part 1 X X Group A
Part 2 X X Group B
Part 3 X X Group A
Part 4 X X Group B

 Collective Knowledge Recall: Benefits and Drawbacks 225

Each part of the experiment was divided into the following activities:

a. Watch the corresponding pieces of the film without talking to other
participants about it.

b. Participate in the movie’s story recall using one of the techniques.
c. Elaborate the final writing of the movie’s story.
d. Answer the experiment evaluation questionnaire.

All the participants, including the facilitator, answered the questionnaire. Its
objective was to generate a qualitative analysis of the differences between the
techniques, to evaluate the benefits of a supporting technology, and to identify the
difficulties that occurred during the experiment.

6 Findings

In this section, we present the results of the experiment based on the analysis of
stories generated at each part, the observations made during the application of the
techniques, and the answers of the evaluation questionnaires.

The stories generated by the groups were evaluated using the following criteria:

• Completeness: how complete the story generated by each group was; i.e.,
whether or not the group had covered all the important facts.

• Level of detail: if the story was presented as a summary of facts, or whether it
had details.

• The structure and the persistence of the knowledge generated: if the
knowledge about the story was kept at the tacit level or if it was formalized.

• The interconnection between story fragments: if the story was composed of
loose fragments or if these fragments were well connected.

In addition, we took into account the geographic distribution of the participants and
the possibility of asynchronous work. In the questionnaire, we asked the participants
how difficult they found the use of each technique.

6.1 Interviews Versus Group Storytelling

The group storytelling technique generated better results than the interviews because
it created a synergy among the participants, stimulating the contributions and
discussions of the group. The contribution of each participant had a positive effect on
the others, by making them remember relevant facts, recall forgotten information,
argue conflicting points of view, and complement the story.

The story that was generated using the group storytelling technique presented
greater completeness and a higher level of detail. Besides describing the main scenes,
many details were reported. In the technique based on interviews, the story that was
generated had several problems: lack of some of the main scenes, a low level of
detail, several assumptions made by the facilitator, and several open questions that
could not be answered by the facilitator. In the technique based on interviews, the
moderator is responsible for putting together the story’s fragments. This may distort
the story because the moderator did not watch the film and s/he does not have enough
knowledge to make her/his own deductions.

226 N. Carminatti, M.R.S. Borges, and J.O. Gomes

One of the disadvantages of both the techniques is that the participants need to get
together in the same place at the same time. This is undesirable particularly in
companies that are distributed geographically. In both cases, the use of verbal
communication caused parts to be lost. Even when written communication was used,
some participants filtered the information before reporting their views. This can lead
to the omission of relevant facts in the final text. This reinforces the importance of
formally registering all interactions.

According to the questionnaire’s answers, the participants encountered difficulties
when applying the techniques. At the interviews, some participants felt constrained; in
the group storytelling technique, some participants felt uncomfortable in the presence
of other people.

In both the group storytelling and interview techniques, incomplete events occurred,
due to lapses in memory and to the lack of necessary information. However, they were
more frequent in the interviews, when the participants did not interact in a group.

Another issue is the importance of the facilitator. Both techniques greatly depend
on the facilitator’s performance. However, in real situations, facilitators are well-
trained people who usually follow a set of guidelines, including a strategy for
extracting the best from participants. For example, although we had adopted the same
technique in Parts 2 and 3 of the experiment, the strategy adopted was different,
resulting in stories with very different characteristics and qualities.

6.2 Group Storytelling with the TellStory

Many problems were solved when the group storytelling technique was used with the
support of TellStory. With the TellStory tool, all the contributions were persistent.
The participants were able to organize their knowledge access the contributions made
by other participants, access the tool at any point from anywhere. To sum up, they
followed the story recall dynamics proposed by the tool [20], achieving some of the
expected advantages.

Nevertheless, other problems appeared. The TellStory promoted less interaction
among the participants and there was little intervention from the moderator due to the
limitations of the tool. These limitations negatively affected the contribution of the
group. Problems such as lack of awareness mechanisms, lack of coordination tools,
and poor communication mechanisms were reported by the participants.

Although it produced important gains in time and energy, the asynchronous
interaction did not motivate the participants’ commitment. Because they logged on at
different times and did not meet, the use of the tool requires a high level of
compromise from group members. A synchronous interaction induces participants to
reserve a fixed amount of time for the task, while the asynchronous interaction tends
to assign low priority to the task. We believe that a mix of the two types of
interactions would be more appropriate. In other words, to start with synchronous
sessions followed by asynchronous interactions.

The story generated by the TellStory presented the same completeness and level of
detail generated by the group storytelling approach without the tool. However, the
scenes were not as ordered, which indicates some limitations of the tool.

The results confirmed that group storytelling is a very strong technique for
recalling stories. However, when this technique is supported by a tool it needs:

 Collective Knowledge Recall: Benefits and Drawbacks 227

- to be as transparent as possible so that people do not apply filters and feel
confident in contributing;

- to provide mechanisms of awareness, coordination, and communication;
- to promote a reliable and motivating environment.

Table 3. Qualitative results obtained by observations from the stories

Aspect Interviews
Group

storytelling
Group storytelling

with TellStory

Quality of
stories

Organized, but
poor and
incomplete stories

Richer, more
complete better
organized stories

Rich, complete, but
disordered stories

Interaction
among
participants

There is no
interaction
between the
participants

Synergy of the
participants

Synergy of the
participants, but the
qualities of the face-
to-face interactions
are lost

Documentation
Disorganized and
not persistent
knowledge

Disorganized
and not
persistent
knowledge

Organized and
persistent knowledge

Role played by
the moderator/
facilitator

The moderator is
responsible for
relating the film
segments

The moderator
questions or
suggests the
connection of
the film
segments

The moderator
questions or suggests
the connection of the
film segments.
He/She also monitors
the participation in
the task.

Group location
The group must be
in the same place,
at the same time

The group must
be in the same
place, at the
same time

It allows access at any
moment from
anywhere

Expressiveness
of participants

Constraints on
interviews

Uncomfortable
in the presence
of other people

Inhibition about
writing their remarks
and beliefs

According to the questionnaire’s answers, all the participants positively evaluated
the dynamic proposed by the tool as being very useful for a story recall. They also
reported that a face-to-face interface is richer and more stimulating. When this
technique is not used, nonverbal information, such as facial expressions, gestures,
voice intonation, and body movements are lost. Thus, the context, the individual
perception of the contributions, and the channel of communications are also lost. The
lack of direct interaction, a characteristic of the TellStory tool, made some
participants less active, reducing their registered contributions. The future re-design
of TellStory should provide face-to-face communication besides other media, such as
video conferencing, audio, and graphic tools.

228 N. Carminatti, M.R.S. Borges, and J.O. Gomes

It is recommended that the story recall occur as early as possible to avoid the
missing of details. On the other hand, the experiment indicated the need for better
teamwork support. The story recall should also motivate participants by providing
benefits of some kind at the cultural and social level.

In Table 3, we present a summary of the features of each technique based on the
observations made during the execution of the techniques, the resulting stories, and
the answers to the questionnaires

6.3 Limitations of the Experiments

The current findings have several limitations. Although these preliminary results
provide useful insights to the collective knowledge recall, further experiments are
necessary to confirm our hypotheses and the first round of findings. It is a consensus
that group synergy has a positive effect on both the quality (completeness and
accuracy) of the stories and the time spent to generate them. However, we have not
confirmed the gains obtained with the groupware tool. This may have to do with the
type of interaction, the functionality of the tool, or the set of experiments.

When groups are co-located in the same environment, the main advantage provided
by the tool is the automatic documentation it generates. The face-to-face interaction,
however, converge to a single story faster than the asynchronous interaction
supported by the tool. The geography distribution of participants cannot be considered
a constraint of the face-to-face interaction because it can be overcome by
videoconferencing support.

The size of the groups can produce some effect on the results. On the experiments
the groups were rather small (four people each). Large projects usually have many
more participants. We believe this creates additional difficulties to face-to-face
interactions, not only on the availability of all participants to get together at the same
time, but also on the dynamics of the interaction itself. The asynchronous interaction
can show some advantages in this situation.

The previous experience of participants working as a team can have some effects
on the results. Teams that have worked together in task-oriented activities are
expected to perform better than teams whose members have never worked together. In
our experiments this was not an issue because the participants knew each other and
had worked as a team in several tasks before the experiment. This situation can be
assumed in most organizations. If, however, they work together for the first time, lack
of trust can create additional barriers for groupware supported interaction [23].

7 Conclusions

This paper presents an experiment to examine the use of the group storytelling
approach for knowledge recall. The group storytelling approach to knowledge recall
was compared to the more traditional approach based on interviews performed by a
facilitator who is also responsible for the final version of the story. We also compared
the group storytelling approach with and without a computational support tool. The
preliminary results show a clear advantage of the group storytelling method over the

 Collective Knowledge Recall: Benefits and Drawbacks 229

interview approach. When we compare the group storytelling approach with and
without the tool, there are advantages and disadvantages in both modes. Further
experiment should be done to confirm these initial findings.

Knowledge recall is an important activity in organizations because many projects
and jobs are carried out without any documentation of their procedures or results [24].
Knowledge recall would serve to support the design of future similar activities, trying
to avoid mistakes and to repeat successes. In order to provide such support, it is very
important to recover the tacit knowledge adopted during these projects. Formal
documentation usually leaves out this important type of knowledge.

We have used feature films to simulate stories that are not completely known by
any participants. We also have cases where parts of the story have been lost. This is
usually the case when the organization cannot count on all participants to recall the
knowledge.

The tool still needs some improvement. Some of expected benefits have not been
achieved because the tool does not support an appropriate functionality. The
experiment was important to generate insights into the requirements of future versions
of the tool. Besides implementing the new functionality, we intend to make the tool
customizable to be able to adapt to different knowledge recall situations.

One important target of our research is to use this approach for recalling the events
that precede accidents that occur in organizations. To do this, the mechanisms of
perception, communication, and coordination of the TellStory tool are being
improved. Some new features are also being incorporated. The dynamic and the
structure of stories proposed by Perret are also being adapted to the context of
accidents and emergency situations [25].

Acknowledgements. Marcos R.S. Borges was partially supported by a grant from the
“Secretaria de Estado de Educación y Universidades” of the Spanish Government.
Naiana A. Carminatti is sponsored by NCE (Master Thesis Scholarship). The authors
are grateful to all those who participated in the experiment: Célia Seabra, Débora
Knight, Flávia Santoro, Igor Miranda, Maria Lopes, Rafael Gonçalves, Rosa Freitas,
Simone Garcia and Viviane Diniz.

References

1. Sole, D.; Wilson, D.G. “Storytelling in Organizations: The power and traps of using stories
to share knowledge in organizations”. Retrieved December 8, 2004, from LILA Harvard
University Web Site:

 http://www.providersedge.com/docs/km_articles/Storytelling_in_Organizations.pdf
2. Ruggles, R., “The Role of Stories in Knowledge Management”. Storytelling Foundation.

Retrieved December 8, 2004, from LILA Harvard University Web Site: Available at:
http://www.providersedge.com/docs/km_articles/The_Role_of_Stories_in_KM.pdf

3. Fröhlich, P., Karandikar, H.: Driving organisational change: Using story to transform work
processes at ABB. Knowledge Management, (2002). Retrieved July 7, 2005 from:
http://www.nelh.nhs.uk/knowledge_management/km2/storytelling_toolkit.asp

230 N. Carminatti, M.R.S. Borges, and J.O. Gomes

4. Collins, T., Mulholland, P., Bradbury, D., Zdrahal, Z.: Methodology and Tools to Support
Storytelling in Cultural Heritage Forums. Proceedings of the 14th International Workshop
on Database and Expert Systems Applications, Prague, Czech Republic (2003) 105-109

5. Shen, C., Lesh, N.B., Vernier, F., Forlines, C., Frost, J.: Building and Sharing Digital
Group Histories. Proceedings of the 2002 ACM Conference on Computer Supported
Cooperative Work (CSCW), New Orleans, Louisiana, USA (2002) 324-333

6. Lawrence, D., Thomas, J.: Social Dynamics of Storytelling: Implications for Story-base
Design. Proceedings of the AAAI Workshop on Narrative Intelligence, N. Falmouth, MA,
USA (1999) 26-29

7. Davenport, G. Smarter Tools for storytelling: are they just around the corner? IEEE
Multimedia Vol. 3, No. 1 (1996) 10-14

8. Steiner, I.D.: Group Process and Productivity. Academic Press, San Diego, USA (1972)
9. Kerr, D.S., Murthy, U.S.: Divergent and Convergent Idea Generation in Teams: A

Comparison of Computer-Mediated and Face-to-Face Communication. Group Decision
and Negotiation Vol. 13, No. 4 (2004) 381-399

10. Valle, C., Prinz, W., Borges, M.R.S.: Generation of Group Storytelling in Post-decision
Implementation Process. Proceedings of the 7th International Conference on Computer
Supported Cooperative Work in Design, Rio de Janeiro, Brazil (2002) 361-367

11. Valle, C., Raybourn, E.M., Prinz, W., Borges, M.R.S.: Group Storytelling to Support Tacit
Knowledge Externalization. Proceedings of the 10th International Conference on Human-
Computer Interaction Vol. 4, Crete, Greece (2003) 1218-1222

12. Perret, R., Borges, M.R.S., Santoro, F.M.: Applying Group Storytelling in Knowledge
Management. Proceedings of the International Workshop on Groupware, San Carlos,
Costa Rica, Lecture Notes in Computer Science, Vol. 3198. Springer-Verlag, Berlin
Heidelberg New York (2004) 34-41

13. Schäfer, L., Valle, C., Prinz, W.: Group Storytelling for Team Awareness and
Entertainment. Proceedings of the 3rd Nordic Conference on Human-computer Interaction,
Tampere, Finland (2004) 441-444

14. Prusak, L.: Where did knowledge management come from?. IBM Systems Journal Vol. 40,
No. 4 (2001) 1002-1007

15. Alavi, M., Leidner, D.E.: Knowledge Management Systems: Issues, Challenges, and
Benefits. Communications of the AIS Vol. 1, Article 7 (1999) 1-38

16. Desouza, K.C.: Facilitating Tacit Knowledge Exchange. Communications of the ACM
Vol. 46, No. 6 (2003) 85-88

17. Nonaka, I. Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press, Oxford, England (1995) 21-45

18. Valacich, J.S., Dennis, A.R.and Connolly, T.: Idea generation in computer-based groups:
A new ending to an old story. Organizational Behavior and Human Decision Processes
Vol. 57, No. 3 (1994) 448-467

19. Bloom, B.S., Krathwohl, D.R., Masia, B.B. (Eds.): Taxonomy of Educational Objectives.
The Classification of Educational Goals. Handbook 1: Cognitive Domain. David McKay
Company, Inc, New York, USA (1956)

20. Perret, R.: The group storytelling approach applied to knowledge management. M.Sc.
Dissertation, Graduate Program in Informatics, Federal University of Rio de Janeiro, IM
&NCE (2004) (In Portuguese)

21. Zope: Open Source Web Application Server. Retrieved June 7, 2004, from:
http://www.zope.org/

22. Holloway, J.: Narrative and structure: exploratory essays. Cambridge University Press,
New York, USA (1979)

 Collective Knowledge Recall: Benefits and Drawbacks 231

23. Rocco, E.: Trust breaks down in electronic contexts but can be repaired by some initial
face-to-face contact. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI), Los Angeles, CA, USA (1998) 496-502

24. Gibson, C.B.: From knowledge accumulation to accommodation: cycles of collective
cognition in work groups. Journal of Organizational Behavior Vol. 22, No. 2 (2001) 121-134

25. Carminatti, N.: Group Storytelling Applied to Collective Knowledge Recall. M.Sc.
Dissertation, Graduate Program in Informatics, Federal University of Rio de Janeiro, IM
&NCE (Forthcoming) (In Portuguese)

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 232 – 247, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Developing Shared Context Within Group Stories

Flávia Maria Santoro1,2 and Patrick Brézillon3

1 Post-Graduate Program in Informatics, NCE&IM, Universidade Federal do Rio de Janeiro,
PO Box 2324, CEP 20001-970, Rio de Janeiro, Brazil

2 School of Applied Informatics, Universidade Federal do Estado do Rio de Janeiro,
Av. Pasteur, 458, Rio de Janeiro, Brazil
flavia.santoro@uniriotec.br

3 LIP 6, Université Pierre et Marie Curie - Paris VI,
8, rue de Capitain Scott, Paris, France
Patrick.Brezillon@lip6.fr

Abstract. Eliciting and re-using knowledge within an organization requires a
very structured communication process among its employees in order to avoid
misunderstanding and confusion. The transfer of knowledge among actors can
only be successful if a common interpretative focus and its context are set up.
So far, information about the real context that surrounded team’s past activities
can help their members to better understand situations at hand. In this paper, we
argue that a combination of group storytelling technique and a groupware tool
can help the elicitation and use of the context shared by a group. Moreover, our
main goal is to discuss how groupware can help to structure and formalize the
contextual information behind the scenes of a story told by a group, making it
easier to understand, interpret and reuse the knowledge intrinsic to it.

1 Introduction

In business environments, knowledge is frequently defined as ‘the capacity for effec-
tive action’ [18][26]. Thus, knowledge per se is not directly of interest to organiza-
tions; primarily knowledge becomes valuable in its application. Procedures can not be
dissociated from the way they have been accomplished in practice and learning a
work process is not just being trained to, but also to observe different alternatives for
doing it, and understand the reasons behind the choices according to specific circum-
stances. The ultimate purpose of knowledge sharing is to promote and disseminate ‘ef-
fective action’, either in the performance of specific tasks or in general behavior [29].

Eliciting and re-using knowledge within an organization requires an elaborated
communication process among its employees in order to avoid misunderstanding and
confusion. The transfer of knowledge among actors can only be successful if a com-
mon interpretative focus and its context are set up and shared [2]. So far, information
about the real context that surrounded team’s past activities can help their members to
better understand situations at hand. This is generally called tacit knowledge, because
for the most part relies on people’s mind and is not registered in formal documents. It
is necessary to capture and organize it in order to be useful.

 Developing Shared Context Within Group Stories 233

However, extracting contextualized knowledge from teams and making it explicit
is not an easy task. Besides people do not have time to spend in providing
information, they are also not motivated since organizational protocols have a
tendency to be somewhat dry and lacking in inspiration. Therefore, we suggest that a
story is one possibility of registering full-bodied collective context. Stories can be a
powerful approach to represent and convey complex, multi-dimensional ideas. “Well-
designed, well-told stories can communicate both information and emotion, both the
explicit and the tacit, both the core and the context” [28].

Storytelling engages people by means of amusing narrative structure with a more
authentic language. Recently, the group storytelling technique has been proposed
within the community of Computer-Supported Cooperative Work [1][20][27][33]. It
is a collective activity of sense-building, with several individuals contributing with
their recollections and interpretations about shared experiences.

In this paper, we argue that group storytelling technique allied with a groupware
tool with specific functionality can help re-building a group shared context.
Moreover, our main goal is to discuss how groupware can provide support to the
externalization of the contextual information behind the scenes of a story told by a
group, making it easier to understand, interpret and also to reuse the knowledge
intrinsic to it. Therefore, we focus on the structuring context feature.

This paper is ordered as follows. Section 2 tells the implication of contextual
information for sharing knowledge in group work. Section 3 presents how the
research in group storytelling has been applied to elicit knowledge and exemplify
with some business references. Section 4 reports the use of Tellstory, a group
storytelling groupware and the way it makes context explicit and structured. Finally,
Section 5 concludes the paper and discusses the next steps.

2 The Implication of Context in Group Work

Context is a complex description of the knowledge shared on physical, social,
historical and other circumstances where actions or events happen. All this knowledge
is not a part of the actions to execute or the events that occur, but will constrain the
execution of an action or event interpretation [3]. For the global understanding of
several actions and events, it is necessary to have access to important contextual
information. Thus, in any domain where understanding, reasoning, problem-solving
and learning are needed, the concept of context plays an important role.

In this work, we use the context model proposed by Brézillon and Pomerol [5].
Context is related to a focus, e.g., task, problem solving or decision making. At a
given step of this focus, context is the sum of all the knowledge possessed by an actor
on the whole process. The authors distinguish between the part of the context, which
is relevant for the current focus of attention, and the part, which is not relevant. The
latter part is called external knowledge. The former is called contextual knowledge
because it has strong connections with the current focus although not directly consid-
ered in it.

Contextual Knowledge is personal to an actor and is evoked by situations and
events determined by his focus. At a given focus, part of the contextual knowledge is
proceduralized. Proceduralized Context is a part of the contextual knowledge, which

234 F.M. Santoro and P. Brézillon

is invoked, assembled, organized, structured and situated according to the focus; it is
used in the task performed at this focus (depicted in Figure 1).

The focus and its context are intertwined: the focus determines what must be in its
context, and the context, on its side, constrains the focus. For example, when telling
an event occurred during the development of a project in an organization, a
professional might say “we used the method X to build the solution for the problem
Y”. The focus was in building the solution for the problem Y applying the method X.
Nevertheless, the context related to that event (not explained in the sentence) was: (a)
one of team members was a specialist on method X; (b) methods W and Z were tried
before but did not succeeded; and, (c) the supporting tool for method X had been
recently bought by the company. The contextual knowledge, proceduralized at the
time the focus arose can now explain it.

Fig. 1. Types of knowledge related to context and their dynamics

Knowledge intensive processes are intrinsically produced by collaborative efforts.
Thus, context plays an important role in collaboration. It can be considered a shared
space that is explored and exploited by participants in the interaction. The procedural-
ized context contains all the pieces of knowledge that have been discussed and ac-
cepted (or at least made compatible) by all the agents at a current step of the focus.
These pieces of proceduralized context then become part of the shared contextual
knowledge of each agent, even if they do not remain within the focus of the context as
shown in Figure 2.

Fig. 2. Building shared proceduralized context and contextual knowledge

 Developing Shared Context Within Group Stories 235

Participants must share contextual knowledge in order to reach an agreement for
effective communication in a collaborative interaction. That is what Brézillon [4]
calls explanation in the context of the interaction among a user and a system in a de-
cision-making process; and the groupware research area calls awareness [9].

Groups share knowledge and build a collective context while working in a task or
in a project. We observe that part of the context about the situations shared generally
remains tacit, not registered, making collective experiences difficult to be explained,
understood and communicated. Thus, we argue that contextual information should be
recalled together with the knowledge produced and properly structured in order to be
retrieved. We propose the group storytelling could be used for this purpose.

Next section presents a review of the group storytelling approach, and enlightens
that the contextual information problem is generally mentioned, but not emphasized
in most applications.

3 The Group Storytelling Approach

Storytelling is a long-established means of passing on wisdom and culture. In recent
years, however, the attention to the role of narrative and sketchy information transmit-
ted in the form of stories within organizations has been increasing. According to Sole
and Wilson [29], it is due to the fact that the harder forms of knowledge that can be
classified, categorized and analyzed are the most valued.

A story can be defined as "a narrative of an event chain told or written in prose or
verse", while the word narrative means "to pass knowledge" [33]. A story “lives by it-
self”, while the narrative of a story is just composed of the facts explicitly told. The
narrative of a story helps to humanize the environment, involving emotions and pro-
voking personal commitment [14]. Besides, telling a story is also an easier way to ex-
plain things informally, because of the needs for contextual cues to underline it, as for
example, to explain how to ride a bike.

The popularity and the importance of the stories for the individuals have turned the
storytelling a technique studied and applied in many fields and for various purposes
such as education and learning [10][22][30], knowledge management in business
[23][32], linguistics studies and artificial intelligence [16][25]. Methods and tools
have been developed to support the stories capturing, registering and retrieving.

Among many examples of storytelling technique applied to promote the knowledge
of management and organizational learning are Shell, ABB and NASA. Shell Interna-
tional Exploration and Production’s program for managing its technical and business
knowledge is focused on gathering and disseminating expertise within the company
wherein the structure is geographically and multi-disciplinary distributed. Logan et al.
[15] explain that storytelling helped them circulate employee know-how to the places
it was most needed.

Post [21] discusses that for NASA’s project managers be able to carry on demands
aiming at faster, better and cheaper results, they used NASA’s ASK Magazine, a sto-
rytelling tool for converting tacit to explicit knowledge. Fröhlich and Karandikar [8]
describe the work undertaken in ABB, which deals with organizational process im-
provement by means of goal-oriented stories, told and derived from their domain ex-
perts’ experiences and recorded in a story-base.

236 F.M. Santoro and P. Brézillon

Most storytelling approaches applied in business are based on individual interviews
made by a professional storyteller, who synthesizes the events collected and writes his
own interpretation into a single text [12]. In this case, the story represents fractions
perceived by each individual and joined in accordance to the viewpoint of the teller.

Nevertheless, real stories in organizations are generally experienced by teams.
Following this perspective, some authors propose the group storytelling technique
[1][20][24]. The group storytelling is a more appropriate method than the individual
storytelling when there are several people involved in the setting that is being
constructed. Groups build jointly a story about a work performed or a situation
experienced by its members. Since each participant performed a role in the scenario,
stories written by a team will probably contain more valuable details and everyone
has the opportunity to present their view on what had happened.

A few groupware prototypes have been developed to support group storytelling
and evaluate the results in terms of knowledge management. The diverse approaches
are based on: texts [20]; graphics [1]; documents [27]; and images [24]. Although
using different media, they all allow participants to add their contributions and discuss
the facts told in a collaborative manner. Authors agree that some structure and aspects
to sharpen memory should be offered. Most of them mentioned context as
fundamental matter, but none were specifically concerned about structuring the shared
context.

In a group storytelling, not only the story itself is interesting but the way in which
the story is built, including opposition and negotiation between people, progressive
construction of an episode from fragmented souvenirs of people. Generally all this
context of the story building is beyond doubt lost and the story only presents a
minimal dimension with no possibility to be adapted in another context.

Brooks [6] affirms that context means “seeing from a point-of-view”, often from
somebody else’s point-of-view. When the readers distinguish the context of a story,
they are able to adopt and accept the point-of-view of the storytellers, in other words,
they become aware of “the world” made available to them.

A knowledge-sharing story offers a surrogate experience, as Sole and Wilson [29]
explain. The narrative layout offers the reader an opportunity to experience in a re-
placement fashion the situation that was experienced by the storytellers. The listener
can acquire understanding of the situation’s key concepts and their context, and even
though the listener did not directly experience the story circumstances as is, he could
experience a similar situation. Therefore, it is very important to make clear the con-
text in which knowledge arises and consequently increase the chance of a significant
knowledge transfer.

Meech [17] states that contextualization and narrative are active processes com-
posed of several elements. Narrative is seen as the story representation (Story) and
presentation (Discourse). The Discourse is the reproduction of the story onto some
form of media. For this author, the Story is divided into events and entities; each one
can be examined in terms of the contextualization that it is capable to provide.

Events illustrate parts of a story and many times are presented alone. However, a
story is not just a collection of isolated events, instead it embodies many elements,
called globally context, which links these facts transmitting to the reader a meaningful
body of knowledge. Events are framed by context including politics, economy,
sociology, literature, and also, personal interpretation, background and culture. The

 Developing Shared Context Within Group Stories 237

connotation of a sentence (event) is not determinable in isolation; but requires relating
the sentence to other sentences around it, prior experiences or some larger context.
Just as knowledge, stories draw meanings from their contextual information [27].

Characters are also an important element of storytelling. The context can be pro-
vided using the story actors as the representation of social hints. In a similar way,
“setting the scene” is the same of providing context. “Events may be compared with
the concept of tasks, the sequencing, structure and composition of which provide vital
contextual information” [17]. In this way, a narrative can be viewed as a conceptual
framework for providing its actors with awareness about contextual constraints that
were once shared by them. Furthermore the readers of the story should be capable to
identify these contextual elements as well.

Based on these conclusions, we claim that the shared elements of context from a
task performed by a group can be elicited and represented through group storytelling.
Therefore, some formalization is necessary and we suggest that a groupware support
tool can help to organize and structure this information making it able to be re-used.

In Section 4, we exemplify the issues discussed here, grounded by the theory
presented on Section 2, and our implementation and experience in capturing and
representing knowledge embedded with context through groupware.

4 Experiences with a Groupware to Structure Shared Context

Previously presented by Perret et al. [20], Tellstory is a groupware that supports col-
laborative stories’ building [31]. It is a web application where any registered member
can start a story and invite new participants to join in, recollect and link important
facts about a situation they have accomplished together.

According to Holloway, a story is a sequence of events that are tied to each other
by a full conductive thread of meaning, built by a causality relationship between a fact
and its successor [11]. Tellstory uses that definition to model the construction of the
story in group. Each user can insert one or more events that are facts happened
throughout the story, which he remembers. These events should be linked in a
temporal flow. Tellstory main interface is shown in Figure 3. A map of events
indicating the events’ sequence and a short description of each event are highlighted.

Individuals can participate on the narrative construction performing one of the
following roles: (i) moderator: creator and responsible for the coordination of the
actions about the story; (ii) teller: member that are able to contribute with events;
(iii) editor: person that will write the final text; and, (iv) commentator: responsible for
the identification of tacit knowledge externalization on the story. More than one person
can assume the same role, as well as each role can be assumed by several people.

These roles are responsible for each step of the storytelling process. When the
group (tellers) understands that the story already provides enough flow of events, the
moderator can conclude it. By this time, the editor gathers the events and writes a
final text based on the sequence. Finally, the commentator searches for tacit elements
that can be identified in the story, which are registered enclosed to the final text.

A story-sharing system must offer flexible narrative, rather than rigid, pre-authored
stories. It should provide enough structure to make possible that new members
understand and re-tell the stories themselves, but not to make people locked into one

238 F.M. Santoro and P. Brézillon

single way of describing the relevant events. The system should support differences in
the way people share stories [27].

The actions along the construction of the story are: inclusion, edition, exclusion,
union and fragmentation of events. The union happens when two events can be con-
sidered as a single one, yet the fragmentation of the event divides it in two, when nec-
essary. The criteria that indicate if a fact is an event, a sub-event or collection of
events do not need to be explicitly defined by the participants. This configures the
tool as a flexible environment, where people can express themselves freely [20].

The focus of this research work is to discuss the ways to communicate correctly the
contextual information that surrounds the events told in order to make them clear and
understandable for all members of the group and mainly for the future consumers of
the story. Tellstory helps users to externalize context in two ways: implicitly embed in
the text and comments about the events and explicitly through a framework provided.

Fig. 3. The flow of a story in Tellstory [20]

4.1 Identifying Context in the Text and Comments

The first manner to express context is informally, through the users’ contributions
(events) and the notes (comments and discussions) about the others’ contributions.
Analyzing the text exposed in the description of each event, we can observe that many
times the facts are naturally mixed with their context. On one hand it reveals the in-
tention of explaining and detailing the whole story, besides the natural language
stimulates free performance. On the other hand, whether a further interpretation of the

Story’s title

Story’s abstract

Short description
of each Event

Map of the
sequence of
Events

 Developing Shared Context Within Group Stories 239

situation described is necessary in order to retrieve some specific facet desired, some
structuring might be required.

Groups need support to express their thoughts and to solve the conflicts in order to
produce real, interesting and useful stories. Once the tellers have included the events,
they can discuss them within Tellstory, through adding comments in a forum format.
The unstructured comments may complement the information presented, as well as
generate conflicts. Individual contexts are proceduralized, allowing a shared and col-
lective context to be built.

We reproduced here extracts from a case study made at a government organization
in Brazil [19] to exemplify this situation. A group of five members (called M1 to M5)
were invited to tell the story about the constitution of the central knowledge manage-
ment team in that institution. They interacted through the Tellstory application during
one month and pointed out the important events, reconstituting their shared context
that had not been registered until that time. Twelve events were told and associated
resulting in a final text; we examine two of them in this paper.

1st Event by M2: In the first meeting of the central team of knowledge management, the
General Controller, the Secretary of Administration and the Executive Director of the
institution had been invited to demonstrate the institutional support and to congratulate the
group. Moreover, the coordinator of the group presented general concepts of Knowledge
Management and the proposal, elaborated by the Knowledge Management Committee,
describing the plans for the work to be performed.

2nd Event by M1: In December 2002 the second meeting of the central team of knowledge
management was carried out. In this occasion, C.S., the Manager of the Corporative
University of one of the institution’s units, presented his project. In this meeting, the number
of participants was reasonably superior to the previous one.
Comments made about this event in the forum:
M1: Do you have any suggestion for what the consequences of this event were?
M3: One important outcome was that the participants had been distributed in 3 thematic
groups (organizational learning, organizational culture and information technology), to
start the work of identifying already existing cases in the institution.

From this point of the story, we can observe that two events were told, related to
two meetings of the group where some other people participated and some deals and
decisions were made. In the first one, the goal was to formalize the group and
establish its objective. The teller M1 explicated his following Contextual Knowledge
(CK), the pieces of knowledge related to the event: (CK1) Some executives were
present; (CK2) The executives gave institutional credibility to the event.

In the second one, the focus was on the speech of C.S. Nevertheless, M1, the
member who told this event could not retrieve one piece of knowledge from his
memory: the meeting led to the creation of thematic groups. Thus, the comments that
M3 shared with the group helped to identify important contextual information related
to this event: (CK3) Thematic groups were started; (CK4) Thematic groups should
identify knowledge management initiatives within the institution. Other contextual
information was pointed by M1: (CK5) The number of participants increased.

According to Brooks [6], the storyteller establishes story context in part through
the relationship with the audience. The author suggests that “the words the storyteller
uses in the story go a long way toward establishing context as well”. The relationship

240 F.M. Santoro and P. Brézillon

is dependent on attributes of the situation or the composition of the audience. For ex-
ample, a woman telling a story to a group of women from her own culture does not
need to specify many details about femininity, for instance, because both teller and
audience share a common cultural definition.

In our case, we would like the storytellers to provide as many details as they can,
because the audience is unknown. A reader could be anyone in organization, even
from other communities different from the tellers and the purpose is to transfer
knowledge that ought to be found as much easily as possible. We can by far observe
that some fine points were omitted in the narrative, as for instance the personal and
professional information about the participants of the meetings.

When a participant in a group storytelling asserts some fact or makes a comment
about some idea presented within the story, he may start a discussion process which can
lead to a learning process by the group. Beyond the results, the process of learning is
concerned in collaboration. The learning effect is personal to an individual because it
supposes the integration of a new item in the existing mental schema of the individual.
A support from another individual (in another mental schema) can only aim at making
compatible the integration of the new item in their respective mental schemas.

We could notice that while the participants told their memories they also explained
the situations by proceduralizing their contextual knowledge, re-building a shared
context from the whole group.

4.2 Organizing Context Through the Complementary Information Framework

The second way used by Tellstory to elicit context is an attempt to extract information
apart from the text of the events in a structured format. Therefore, it provides the
users with a Complementary Information (Context) Framework to stimulate
externalizing specific contextual information related to each event of the story.

For some authors [24][27][6], four questions are essential to storytelling: who?,
when?, where?, and what?. These categories provide the type of contextual
information expected to be captured together with the story. Based on studies about
awareness in groupware applications, we introduce two more questions besides the
who? when? where? what?: the how? and why?.

The contextual information that surrounds an event in a story should explain it. The
answers for these six questions are supposed to provide that information. Therefore
we suggest that they have to be represented and organized. A Framework based on
these questions is presented in Tellstory interface while a participant is editing an
event. The teller can use this space to inform the particulars about the event as well as
create proper relationships among them.

The framework calls the users’ attention to the typical characteristics of a narrative
structure, in fact, working as a guide for the tellers, stimulating their memories and
helping them to better structure their thoughts and expand their contribution by giving
more details about the event told.

The subjects pointed in Table 1 compose the Context Framework asking the tellers
to post some specific information related to the six questions mentioned.

In Figure 4, we show the creation of an event and the presentation of some parts of
the Context Framework in Tellstory interface. The level of structuring the information
proposed allows identifying relationships among the events declared and retrieve

 Developing Shared Context Within Group Stories 241

them after. For example, participants are stimulated to describe the details about each
Character of the story (general description, professional background, technical abili-
ties, interpersonal relationship with the group, task involvement) and associate to a
specific event the ones who really actuated in it (as highlighted in Figure 4).

Table 1. Subjects on the Context Framework

Subject Asks the teller to: Addresses:
Character Detail the personages and their roles on the story (General

Description, Professional background, Technical abilities, In-
terpersonal relationship with the group, Task involvement)

“Who?”

Period Write date or period where this event occurred. “When?”
Classification Indicate to what part of the story this event belongs (Exposi-

tion, Complication, Climax or Outcome)
“When?”

Place Describe the place and scenario where this event occurred. “Where?”
Causes Discuss what caused this event (events might be related to

the previous events)
“Why?”

Effects Type the consequences of this event (events might be re-
lated to the next events)

“What?”

Emotions Describe perceived feelings while this event has occurred “How?”

Fig. 4. Externalizing Context in Tellstory

The creation and description of characters are made apart. Figure 5 illustrates the
description of a story character. After telling important information about each
character of the story the whole list of characters (shown in Figure 4) are made
available to be linked to a specific event.

Eliciting contextual information
through the Complementary In-
formation (Context) Framework

Informing who the
participants (actors) of
this event are

242 F.M. Santoro and P. Brézillon

Fig. 5. Character Description in Tellstory

The same procedure is done concerning the Place, which the participants should
depict and incorporate into a list. Besides, they indicate the exact Period when that
event has taken place, along with its position in the progress of the story (Exposition,
Complication, Climax or Outcome). This information may possibly determine the re-
percussion of a specific event for the whole results of the experience described.

The Causes and Effects clarify the non-temporal links among different events. It is
important to realize that one fact had contributed to others even though they could
have apparently no relationship at all. For instance, the exposition made by the coor-
dinator at the first event of our case study might have motivated consequences in
some decision later on the project. If someone wants to reuse this decision in a similar
situation, it would be helpful to notice that some previous fact had contributed to it.

Finally, the personal feelings of people influence the way things go on in several
settings. Trying to capture some of them, we seek to go deep in the explanation of
how things happened. We let the tellers associate an iconic representation of Emotions
to each actor involved in an event told.

The attempt to extract contextual information apart from the story makes possible
to start a process of formalizing context. The Framework provides structured lists for
all the contextual elements described, including the graphical icons to represent the

Characters’ description

 Developing Shared Context Within Group Stories 243

emotions felt by the actors in the course of an event. Establishing formal relationships
among the various contextual elements makes it possible for the readers of stories to
search for information that are related to the circumstances he deals with and so he
can learn with the accomplishment of the story, reusing knowledge.

Back again to the example of our case study, while describing the events, the tell-
ers also used the Context Framework proposed to detail and organize the information
provided:

1st Event by M2

Characters: M1, M2, M3
Place: The event occurred at a full ample and comfortable auditorium that belongs to
the Strategical Planning Department. The audience was composed of employees’ rep-
resentatives from all the units of the institution (public companies). (M2)
Period: 14.11.2002, from 15:30 to 17:30. (M2)
Causes: As mentioned in Decree 21,683, of 04.07.02, the representatives of the munici-
pal agencies would have to participate on specific or general meetings. All of them had
been invited by means of an email posted by the work Coordinator. (M1)
Consequences: People heard the words of the authorities supporting the initiative and
learned on the subject Knowledge Management and the proposal of the team. (M3)
Emotions: Most of the audience did not demonstrate in their faces credibility on the
proposal. Many people were tense, confused, without knowing right what was happen-
ing. Some people had questioned the success possibilities of the work in face of the
complexity and the cultural characteristics of the institution. However a few other peo-
ple demonstrated excitement with the new perspectives of sharing among the institu-
tion’s agencies. (M1)
Classification: Exposition (M1)

Adding such information based on the framework, allowed the group to increase
even more their collective knowledge about the event and the relationship among the
others. M1, M2 and M3 revealed to the group new contextual knowledge that helped
to explain how and why things took place at that time: (CK6) There is a decree that
compels the employees of the institution to participate in such meetings; (CK7) The
Coordinator invited people for the meeting. As a result or Proceduralized Context
(PC) reached at that time, they agreed that: (PC1) People were not receptive to the
proposal at first moment.

If we interpret the pieces of knowledge provided, it would be possible to write the
following statement:

If (CK3) and (CK6) and (CK7) and (CK1) and (CK2)

Then Focus Event 1
Result PC1

Such statement creates relationships among the isolated contextual information
provided by teller, providing one more level of structuring.

We observe that after the interaction, the group has registered many of the knowl-
edge about work they performed together. It was very natural for them to formalize
the events and contextual information that surrounded them through storytelling. The
next step is to move the application to an even more formal model such as ontology
which will make possible not only to explore the relationships among diverse contex-
tual information in deep, but also to infer non explicit ones.

244 F.M. Santoro and P. Brézillon

5 Conclusions and Future Work

The conditions and constrains of knowledge use are as important as the knowledge it-
self. Research on context [5] recognizes that the capture, the management and the re-
trieval of explicit organizational knowledge must be considered jointly with the con-
text in which it is captured, recorded and used. The lack of contextualization can lead
to knowledge misuse or may cause wrong application since knowledge cannot be
separated from its use.

In this paper, we highlight the importance of identifying contextual information al-
lied to the pieces of knowledge shared within a group interaction while performing a
task or a project in an organization. Due to the characteristics of this process we pro-
pose the group storytelling technique to support the structuring of context. We exem-
plify our discussion through a case study made with Tellstory [19], a groupware that
supports collaborative story building, showing the viability of this proposal.

Narrative is a structure for conveying a series of related events. We observed that
the story may omit details, but important agents, events, causes and results are
pointed. A narrative describes a project history and its evolution over time. It may not
be as complete as, for instance, videotapes of the entire work process, but it does
communicate effectively how a project has taken form. By relating changes, problems
faced and decisions made, a narrative can help make explicit some of the implicit
knowledge the participants used to understand and implement the interventions, in
other words, the whole context built. Thus, one might infer whether the results were
applicable elsewhere.

Indeed we recognize there is not a clear distinction between the story and its shared
context and this is why the study of context in the domain of storytelling presents a
special interest. Contextual Knowledge could be placed at a meta-level if compared to
the narrative, in the sense that it is a framework to classify the pieces of knowledge,
turning the story able to be more easily adapted to different situations and also reuse
alternatives initially abandoned.

We assume there are different granularity levels for Contextual Knowledge. For
example, in our case study, taking the meeting as the focus, at one level, we can no-
tice that the coordinator invited people (a very general context), but at another level,
people went there obliged due to a decree (more specific context). The story unifies
all the contextual elements providing a global sense to them.

Other kinds of contextual information can be in addition proposed. Asking for
other relevant events, but not directly related to the story: What more was happening
at the time the event took place? Is this any special date? (when). Asking for stake-
holders: Who else knows about this event or could be interested in this topic? (who).
Asking for extending knowledge about the event: What kind of professional informa-
tion is there about this? What other applications are related to it? What more can be
read about this? (what). Asking for relationships in space: Where else could it have
occurred? (where). It would also be interesting to associate Emotions with Causes and
Effects.

However it is important to draw attention not to overwhelm the participants with a
big framework and many screens to pass through. Otherwise, telling a story would be
distorted in a form fill practice. In our first experiences we have tried to let the tellers
free to inform just whatever they want, not making any field obligatory.

 Developing Shared Context Within Group Stories 245

The template provided by Tellstory is the first attempt to solve the context struc-
ture problem. Now we begin to study how to provide an even more formal structure
for the pieces of knowledge captured by adding ontology format feature to the stories.
Ontology will enhance the possibilities of making inferences on the information re-
trieved and provide the users of the stories the capability of associating them with
their own contexts.

Because stories occur under a cultural and historical context, facilities to bring out
background and contextual information could be provided, e.g. relevant news, to as-
sist the user to interactively reflect on and share past experiences of the group. This
could help participants to remember important facts, including personal ones, which
might probably have affected the story. The current version of Tellstory allows users
to upload documents associated to the story.

Group sense-building is a valuable function of storytelling and electronic story-
bases can stimulate it by providing facilities such as comments and re-telling [7].
Nevertheless, discussions and disagreements will certainly arise. The forum format
provided could be improved using a pre-defined model such as the ibis [13]. This
way, information contained in the comments could also be linked and more easily
used to advantage of the groups.

Also as a future work, one issue that should be discussed is the identification of the
appropriate roles and what their contribution in terms of elements in the collective
context linked to the focus could be. Proper interventions made by individuals with
specific assigned roles may result in a story even more rich in details. We believe that
the basic roles offered by Tellstory could be increased.

Besides other case studies wide-ranging in time should be carried on in other
evaluate the next step in this process, which is the retrieval of knowledge contained in
the stories from the community inside the organizations.

References

[1] Acosta, C., Collazos, C., Guerrero, L.A., Pino, J.A., Neyem, H.A., Motele, O.: Story-
Mapper: A Multimedia Tool to Externalize Knowledge. Proceedings of the XXIV Con-
ference of the Chilean Computer Science Society, IEEE CS Press, Arica, Chile, Novem-
ber, 2004, pp. 133-140.

[2] Araujo, R. M., Brezillon, P.: Modeling Software Organizational Knowledge through
Context. Proceedings of Knowledge Sharing and Collaborative Engineering, St Thomas,
USA, 2004.

[3] Brézillon, P.: Context in problem solving: A survey. The Knowledge Engineering Re-
view, vol. 14, n°1, 1999; pp. 1-34.

[4] Brézillon, P.: Individual and team contexts in a design process. Proc. 36th Hawaii
Int.Conf. on Systems Sciences. HICSS-36, Track “Emerging Technologies”,
R.H.Sprague (Ed.), Los Alamitos: IEEE, CD-Rom, January, 2003.

[5] Brézillon, P., Pomerol, J.C.: Contextual knowledge sharing and cooperation in intelligent
assistant systems, Le Travail Humain 62 (3), PUF, Paris, 1999, pp. 223-246.

[6] Brooks, K.: The Context Quintet: Narrative Elements Applied to Context Awareness, In
Proceedings of Human Computer Interaction, Greece, 2003.

246 F.M. Santoro and P. Brézillon

[7] Fraser, M., Stanton, D., Ng, M., Benford, S. D., O'Malley, C., Bowers, J., Taxn, G., Fer-
ris, K., Hindmarsh, J.: Assembling History: Achieving Coherent Experiences with Di-
verse Technologies. Proceedings of ECSCW 2003 Helsinki, Finland, Kluwer, 2003.

[8] Fröhlich, P., Karandikar, H.: Driving organisational change: Using story to transform
work processes at ABB. Knowledge Management, 18 Mar 2002.

[9] Gross, T. and Prinz, W.: Modeling Shared Contexts in Cooperative Environments: Con-
cept, Implementation, and Evaluation. Computer Supported Cooperative Work: The
Journal of Collaborative Computing, Volume 13, Issue 3, August 2004.

[10] Guerrero, L. A., Mejías, B., Collazos, C., Pino, J., Ochoa, S.: Collaborative Learning and
Creative Writing. Proceedings of the First Latin American World Wide Web Conference,
IEEE CS Press, Santiago, Chile, 2003, 180-186.

[11] Holloway, J.: Narrative and structure: exploratory essays. Cambridge University Press,
New York, 1979.

[12] Kleiner, A. and Roth, G.: How to Make Experience Your Company's Best Teacher. In:
Knowledge Management. Harvard Business Review 75, no. 5, 1997.

[13] Kunz, W. and Rittel, H.: Issues as Elements of Information Systems, Working Paper 131,
Inst. of Urban and Regional Develop., U. California at Berkeley, 1970.

[14] Lelic, S.: Fuel Your Imagination - KM and the Art of Storytelling. Knowledge Manage-
ment, 2001.

[15] Logan, E., Boyd, A., Vigers, B.: A pipeline for collaboration: Leveraging knowledge
through storytelling at SIEP. Knowledge Management, 20 Nov 2001.

[16] Mateas, M., Sengers, P.: Report from the 1999 Fall American Association for Artificial
Intelligence Narrative Intelligence Symposium, USA, 1999.

[17] Meech, J.F.: Narrative Theories as Contextual Constrains for Agent Interaction. In: 1999
Fall American Association for Artificial Intelligence Narrative Intelligence Symposium,
USA, 1999.

[18] Nonaka, I.: A dynamic theory of organizational knowledge creation. Organization Sci-
ence 5(1): 14-37, 1994.

[19] Perret, R.: The Group Storytelling Technique Applied to Knowledge Management. Mas-
ter Dissertation, Federal University of Rio de Janeiro, Brazil, 2004 (in Portuguese).

[20] Perret, R., Borges, M.R.S., Santoro, F.M. Applying Group Storytelling in Knowledge
Management, Proceedings of International Workshop on Groupware, San Carlos, Costa
Rica, Lecture Notes in Computer Science, Berlin, Germany, Springer-Verlag, 2004.

[21] Post, T.: The ASK story: An insider’s perspective on storytelling at NASA. Knowledge
Management, 20 Nov 2001.

[22] Roussou, M.: The Interplay between Form, Story and History: The Use of Narrative in
Cultural and Educational VR. In O. Balet, G. Subsol, and P.Torguet (Eds.), International
Conference on Virtual Storytelling 2001, LNCS 2197, Springer-Verlag Berlin Heidel-
berg, pp. 181-190, 2001.

[23] Ruggles, R.: The Role of Stories in Knowledge Management. Storytelling Foundation.
http://www.storytellingfoundation.com/articles/business/stories-km.htm. Accessed on
August 2003.

[24] Schäfer, L., Valle, C., Prinz, W.: Group Storytelling for Team Awareness and Entertain-
ment. Proceeding of ACM NordCHI, Tampere, Finland, 2004.

[25] Schank, R.: Virtual Learning: A Revolutionary Approach to Building a Highly Skilled
Workforce. McGraw-Hill, 1997.

[26] Senge, P.: Sharing Knowledge. Executive Excellence 14(11): 17-18, 1997.
[27] Shen, C., Lesh, N.B., Vernier, F., Forlines, C., Frost, J.: Sharing and Building Digital

Group Histories. Proceedings of ACM CSCW’2002, New Orleans, USA, 2002.

 Developing Shared Context Within Group Stories 247

[28] Snowden, D.: The Art and science of Story or ‘Are you sitting uncomfortably? Business
Information Review, Dec 2000 17(4): 215-226.

[29] Sole, D., Wilson, D.: Storytelling in organizations: The power and the traps using stories
to share knowledge in organizations. LILA, Harvard, Graduate School of Education,
2002.

[30] Stanton, D., Bayon, V., Neale, H., Ghali, H., Benford, S., Cobb, S., Ingram, R.,
O’Malley, C., Wilson J., Pridmore, T.: Classroom Collaboration in the Design of Tangi-
ble Interfaces for Storytelling. Proceedings of Computer-Human Interaction, Minneapo-
lis, USA, 2001.

[31] TELLSTORY: http://chord.nce.ufrj.br:8080/tellstoryen, 2005.
[32] Thomas, J.C., Kellogg, W.A., Erickson, T.: The Knowledge Management Puzzle: Human

and Social Factors in Knowledge Management. IBM Systems Journal, v.40, No.4 (2001).
[33] Valle, C., Raybourn, E.M., Prinz, W., Borges, M.R.S.: Group Storytelling to Support

Tacit Knowledge Externalization. Proc. of the 10th International Conference on Human -
Computer Interaction. Crete, Greece, 2003.

Patterns of Collaboration and Non-collaboration
Among Physicians

Claudia Barsotini1 and Jacques Wainer1,2

1 Department of Health Informatics, Federal University of Sao Paulo (UNIFESP),
Sao Paulo, SP, Brazil

claudia@dis.epm.br
2 Institute of Computing State University of Campinas (UNICAMP),

Campinas, SP, Brazil
wainer@ic.unicamp.br

Abstract. This work present an empirical evaluation of factors that discourage
a stronger collaboration of physicians across time. By observing two different
outpatient clinics in which a single patient is treated by a sequence of physicians
for a long period, we were able to detect three aspects of a (paper) patient record
that makes collaboration difficult: lack of diagnostic rationale, lack of treatment
rationale and improper way of presenting the information contained in the patient
record.

1 Introduction

The collaboration among physicians has always been a topic of interest among re-
searchers in collaboration and CSCW. There are examples of very efficient groups, for
example a surgery team, or a medical committee discussing case. In all these examples,
the collaboration is synchronous and intense. We are interest in a asynchronous form
of collaboration, specially a collaboration centers on a artifact - the patient records.
We feel that an understanding of how physicians collaborate and more specifically how
the patient record inhibits the collaboration among physicians could lead to important
insights on how to develop computer based patient records that foster collaboration.

Long-term care of chronic or syndromic patients, seems to be an extremely inter-
esting example of work to promote collaboration among physicians. In the case of
syndromic diseases, in which patients have a set of signs and symptoms, one single
physician may not be able to care for all aspects involved in the syndrome, requiring
collaboration of other specialists. In cases of chronic diseases, in which definite cure is
not possible, settling for stabilization of the disease manifestations, collaboration seems
to be within the same medical specialty. In this case, collaboration takes place among
physicians of the same specialty and in general they have different levels of knowledge
about the specialty.

1.1 Relevant Research Studies on Medical Collaboration

There has been interest in medical collaboration for some time, especially in the ar-
eas of promotional tools, analysis and assessment of collaborative examples. In the

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 248–254, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Patterns of Collaboration and Non-collaboration Among Physicians 249

area of tool development, telemedicine may be seen as one of the main research lines
involved in promoting medical collaboration. Almost all examples of telemedicine in
teleconsultation described in the literature, either synchronous or asynchronous, involve
collaboration between two healthcare professionals.

In the area of analysis and assessment of examples of medical collaboration, re-
search studies point to medical records, either electronic or traditional, which require
substantial improvement to enhance collaboration among professionals that use them.

Some studies about medical collaborative work show significant discrepancies in the
assumptions of the role of electronic medical records in reaching integration of different
medical services[2]. Other studies analyzed limitations of the electronic record systems
when used by interdisciplinary groups [1,3].

Medical practice varies widely through different sectors, departments, hospitals and
specialties[4,5,6]. This variation in practice is also translated into differences in use and
type of source of information. Furthermore, there are significant discrepancies between
collected data in the paper medical records and the necessary information to reach inte-
gration among physicians, considering the way physicians use and communicate infor-
mation on the patients. What is written down is substantially different from what is said.

Other works have pointed out that paper medical records reproduce fragmented and
ambiguous redundant information about patients [7,8].

2 This Study

In this study, we were interested in understanding how physicians collected information
from medical charts (which were paper version in this case) to assess a new patient sent
to them. We may understand it as a collaboration throughout time: one physician saw
the patient for some time, recorded information about him/her in the medical file and
a second physician, using the same medical record, has to learn about the condition
and status of the patient. As we will see in the present paper, the information usually
available in medical records is not enough for the collaboration to be effective.

Understanding the limitations of paper medical records may be relevant in designing
electronic medical charts in order to maximize this type of collaboration.

The present study investigated two outpatient clinics in a large hospital in Brazil.
It is a public university hospital in the city of Sao Paulo, in which patients have access
to several procedures, from emergency care to periodical visits, exams or even hospital
admission. Given it is a state-owned institution, services are paid by the government,
reason why the hospital attracts mainly low-income people.

First of all, we studied the specialty of Clinical Neurology. Neurology is a specialty
in which most of the cases are chronic or syndromic and patients are followed up by pe-
riodical visits to assess progression of the disease, to make adjustments in drug dosages,
to control some symptoms, and make appointments with other specialties. The physi-
cians that work in the neurological unit are resident physicians in the Medical Residence
Program in Neurology, which lasts three years.

Secondly, we studied the clinical specialty of Nephrology, more specifically, Renal
Lithiasis. The subspecialty of renal lithiasis is characterized by chronic patients that
are controlled by periodical medical visits to assess disease progression and medication

250 C. Barsotini and J. Wainer

adjustments. The physicians that work at the nephrology unit are resident physicians
in the Medical Residence and Specialization Program in Nephrology, which lasts three
years.

Thus, both the Neurology and the Nephrology outpatient clinics are integrated in
the hospital infrastructure, especially regarding visit scheduling, patients’ referral to
other specialists and scheduling of exams and tests. Patients’ records are controlled
and managed by the hospital, known as the blue record file, and stored in the medical
and statistical filing center (abbreviated in Portuguese as SAME). The medical chart
is required from SAME by the outpatient unit management some days before the visit.
SAME separates the records of scheduled patients and send them to the outpatient clinic
on the day the patient has a visit. Almost all outpatient clinics also have their own
specific information in a chart, creating a parallel network of information on the patient.

The present study was conducted from January to May 2004 in the Neurology Gen-
eral Outpatient Clinic of the Department of Neurology, Universidade Federal de Sao
Paulo, Sao Paulo Hospital (HSP). Some characteristics of the outpatient clinic are as
follows: chronic and syndromic patients, seen for long periods of time, and medical
staff that is switched every two months owing to the schedule of the medical residence
program.

We based our collection on three types of data: observation of visits, interviews with
physicians, and analysis of documents. We analyzed the medical records of patients,
both the specific and the general HSP charts.

We gathered 14 case reports and over 21 hours of observation. The observation of
the medical visits was focused mainly on describing the situations in which physicians
collaborated using the medical record of the patient. After observing the visits, some
questions were asked to the physicians that had seen the patients in order to better
understand the case. The description of two visits and the discussion with the physicians
of the Neurology General Ambulatory are provided below.

2.1 Case Reports

We selected two vignettes to illustrate three points we find important.

Case 1. “.... The physician read the three previous visits of patient MRS, male, 91 years
old, who has been followed-up in other HSP units (Cardiology, Urology and Geriatrics)
since 1990. The medical record has the diagnoses of coronary artery insufficiency, hy-
pertension and Parkinson’s disease (PD) since 1990. In the specific Neurology chart,
the diagnosis of PD was made two years ago. The physician suggested that the pre-
sumptive diagnosis of PD was made two years and not 10 years before. The preceptor,
who was in the room and knew the case from previous visits, suggested that the disease
had in fact been in existence for 10 years and the family members of the patient agreed.
The physician reported what was described in the first visit at the Neurology outpatient
clinic and the preceptor refused some of the findings. The physician reported the drugs
taken and the dosages and that the patient had interrupted drug use. The preceptor re-
minded them that the patient had discontinued medication because of therapeutic trial,
and that this information was not in the medical record. The preceptor questioned the
specific condition of the patient and its correlation with advanced age...”

Patterns of Collaboration and Non-collaboration Among Physicians 251

Case 2. “... patient MHL, 37 years, currently being followed up at Neurology and other
HSP units. The physician read aloud the clinical history to the patient and checked
whether she still had the same symptoms and the main complaint. The patient reported
worsening of pain in the leg; in the medical chart, it was described as normal physical
examination. The physician did not find the topographic diagnosis of the condition in
the chart. The patient complained that she had only undergone one test since she had
started treatment. The physician asked the patient about other pains and aches, rashes,
urine, and stools. The patient answered they were normal. The physician did not write
these pieces of information down on the chart. The patient reported difficulty to come to
the psychiatric visit and that she had been absent from some sessions; moreover, she had
stopped taking the prescribed medication. The physician called the preceptor to discuss
the case. The physician described the case since the beginning and the preceptor said
he could not understand it. Then, the physician reported the case in a clearer fashion by
chronologically describing clinical history, disease progression, diagnosis and exams...”

3 Discussion

The two vignettes above illustrate three issues that we find important regarding collab-
oration between physicians across time:

1. Lack of information about the diagnostic rationale.
2. Lack of information about therapy and medication used.
3. Inappropriate data collection and presentation.

Let us see them in details. Regarding the lack of information about the diagnosis ratio-
nale, in Case 1, the presumptive diagnosis was not included in the medical chart (“In
the specific neurology chart, the diagnosis of PD was made two years before.”). That
is, there was a suspicion of PD but until the Neurology staff made the diagnostic there
was no record of it - and wrongly, once the diagnostic was made, it was placed 8 years
before (because it explained 8 years of the patient’s symptoms).

There are a set of characteristics of the patient record that explain this lack of
rationale.

– The patient record is a legal document that can be used in legal processes as evi-
dence both against and in favor of the doctor

– The records are also used by the health organizations for teaching, for quality con-
trol, and so on

– Finally in Brazil, the health records are legally property of the patient, and are only
under guard of the health organization and health professional. Thus the patient can
request his records at any time.

All these aspects of the patient records make them an artifact that it is not under control
of the physicians who are the ones that deal and interact with it. This lack of control over
future of the artifact constrain what the physicians are willing to record on it. From the
physician’s point of view, his legal and ethical obligations are to record the raw data (lab
exams, physical exams) and his decisions but not his doubts. Not recording doubts and
speculations, and the rationale for his actions may be something the physician learns

252 C. Barsotini and J. Wainer

because other do the same, but a possible reason is that a physician does not want to
record in a legal document what he does not know.

Case 1 also illustrate this lack of rationale information regarding the prescriptions.
The reason why such drugs were selected, changes of dosage, and therapeutic trials
were suppressed from the chart, and the preceptor had to clarify the reason why treat-
ment was discontinued (“... the physician reported the drugs taken and the dosages and
that the patient had interrupted drug use. The preceptor reminded them that the patient
had interrupted medication use because of a therapeutic trial”). Again the fact that the
records are a legal document may hinder recording the rationale - the legal important
information is what was prescribed, and not why that drug was prescribed.

Case 2 shows a less clear problem. The physician included irrelevant information
about the patient in the medical record, in addition to presenting difficulty to report the
history in an organized and summarized fashion (“The physician described the case
since the beginning and the preceptor said he could not understand it. Then, the physi-
cian reported the case in a clearer fashion by chronologically describing clinical his-
tory, disease progression, diagnosis and exams...”) It was necessary to chronologically
reorganize the information from the chart to report the case to the preceptor. The charts
record, at most, the details of a single consultation, but in a diagnosis process that is
not an appropriate form to organize that information. Probably besides rationale, things
like expectations, future plans, and information that can link one consultation to the
previous and next one will be useful to reconstruct a epistemic history of the case and
to more quickly understand what is the state of the patient’s treatment.

4 Conclusions

This paper has presented three shortcomings of paper medical records as tools that
should facilitate the collaboration or at least communication among physicians through
time. For long term patients, the medical records are the form by which a doctor should
communicate his opinions and decisions about the patient to doctors that will take care
of the patient in the future.

Two of the shortcomings derive from the fact that the records are not under control
of the physicians - they are in some sense property of the patient, they are under control
of the health organizations, and they may be seized by legal authorities. Given this
lack of control over the artifact, the users are not willing to write down their doubts,
expectations and so on, information that will be helpful for future doctors responsible
for that patient.

The third shortcoming derives from different perspectives that are in place when
the physician is filling the record and when he is reading it. The order and amount of
information recorded is not conductive to a reconstruction of the case, which is what is
needed when a new physician assumes the patient.

In broad terms, the needs of medical records to foster better collaboration are not
dissimilar from the ones pointed out by researchers on collaboration in design, and so
likely are the solutions and problems [10].

These problems must be addressed when specifying an electronic medical record
system, if one expects improvement on the collaboration levels of doctors using the

Patterns of Collaboration and Non-collaboration Among Physicians 253

system. The line of research presented in this paper, of understanding the practice of
collaboration in health care, and other published research [11,12] on the same topic,
hopefully will on the future finds its way into the requirements of future health care
systems that can really improve the quality of care.

We feel that it is too soon to propose technical solutions to the problem of improving
physicians collaboration. There are issues that still require further investigation; for
example the issue of rationale. It is clear from our research that the recording of the
decisions rationale is a useful tool for the collaboration, but it is yet unclear exactly
what needs to be recorded and whether physicians are able and willing to record the
rationale.

Nevertheless we are in the first stages of exploring a obvious technical solution to
the problem - the separation of the patient record in a legal and “non-legal” or “private
notes” part. The legal component would remain as it is, with the legally required in-
formation about the patient, diagnosis, treatment, and so on, and the other component
would allow the physicians to express the rationale behind the decisions, their expecta-
tions and doubts regarding the patient treatment and so on. In fact we have evidence of
double records, not in health organizations, but in privately own practices.

But this poses the question of the ownership of the non-legal component of the
records - in the case of the private practice, the owner is the physician himself. But in
the case of an outpatient public clinic the issue of ownership is less clear.

A different question, even if the ownership issue is resolved, is whether physicians
are willing and have enough incentives to record the decision rationale and doubts.
Physicians are trained to present themselves as very sure to the patients and they may
feel very uncomfortable to disclose their doubts. There may be problems with a per-
ceived loss of professional standing if a physician expresses his doubts to colleagues.
Finally there is the ever present issue of the separation of those who do the extra work
and those who profit from it [13] - why would a physician spend the extra time recording
the rationale if he is not the one that should benefit from it?

In a related line of research we are in the first stages of investigating the use of the
non-legal part of the record to automatically generate many kinds of different reports,
including the legal component of the record, and a patient summary. This would not
only encourage the physician to use the non-legal record but would also attempt to solve
the third problem discussed in this paper, the quality and quantity of information needed
to understand the state of a patient. A summary that links the different consultations
regarding expectations, plans, and so on, may be extracted from the non-legal record if
it has enough information. Again, more empirical research is needed to determine what
information is really needed in these summaries.

References

1. Ellis CA; Gibbs, S.J. e Rein, G.L. Groupware: Some Issues and Experiences. Communication
of the ACM, v.34, n.1, 1991, p.1-29.

2. Hartswood M, Procter R, Rouncefield M, Slack R. Making a Case in Medical Work: Implica-
tions for the Electronic Medical Record. Journal of Computer Supported Cooperative Work,
12, 2003. p 241-266.

254 C. Barsotini and J. Wainer

3. Strauss A, et al. Social Organization of Medical Work . University of Chicago Press. 1985,
Chicago.

4. Atkinson, P. Medical Talk and Medical Work. Sage, London: 1995
5. Berg, M. Patient Care Information Systems and Health Care Work: A Sociotechnical Ap-

proach. International Journal of Medical Informatics, vol. 55, pp. 87-101, 1999.
6. Grimson, J., W. Grimson and W. Hasselbring. The SI Challenge in Healthcare. Communica-

tions of the ACM, vol. 43(6), pp. 49-55, 2000. ACM Press.
7. Clarke K., Hartswood M., Procter R., Rouncefield M.. The Electronic Medical Record and

Everyday Medical Work. Health Informatics Journal, 7(3/4), 2002. p. 168-170.
8. G. Ellingsen, E. Monteiro, A patchwork planet. Integration and cooperation in hospitals,

Journal of Computer Supported Cooperative Work, 12: 71-95, 2003.
9. Berg, M. Search for synergy: interrelating medical work and patient care information sys-

tems, Methods Inf. Med., July 2002.
10. T. Moran and J. Carroll, eds. Design Rationale Concepts, Techniques, and Use Lawrence

Erlbaum Associates, 1995.
11. Ash, J., Berg, M. and Coiera, E. Some unintended consequences of information technology

in health care: the nature of patient care information system related errors. Journal of the
American Medical Informatics Association vol 11, n.2, 2004

12. Berg, M. Practices of reading and writing: the constitutive role of the patient record in medi-
cal work. Sociology of Health and Illness. Blackwell Publishers. vol 18 n. 4, 1996.

13. Grudin, J. Why CSCW Applications Fail. Proceedings of the Conference on Computer-
supported Cooperative Work,. pp. 85-93, 1988

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 255 – 262, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Shared Knowledge: The Result of Negotiation in
Non-hierarchical Environments

Oriel Herrera1 and David A. Fuller2

1 Informatics School, Universidad Católica de Temuco,
Manuel Montt 56 Temuco, Chile

2 Computer Science Department, Pontificia Universidad Católica de Chile
V. Mackenna 4860, Santiago, Chile

dfuller@ing.puc.cl, oherrera@uct.cl

Abstract. The knowledge building can be seen as a collaborative process of
which negotiation is a fundamental aspect. The use of technology to support
this process has been attempted in various groupware systems. However, there
is no adequate support system for the process of negotiation, which generally
relies on voting as the element for reaching agreement in decision-making. On
the other hand, the best approaches to this problem have been formalised in
learning environments where there is a clear hierarchical structure. When the
environment is not hierarchical, new problems arise which require special
attention. This article presents a model of knowledge building that has
negotiation as its basis in a group that is non-hierarchical in its structure. The
model is implemented on a prototype tool named ShaKnoMa, which is tested on
common tasks in an environment such as that proposed here. For the knowledge
representation, concept maps are used which act a scaffolding to classify, index
and search the information.

Keywords: Knowledge-Building, Concept Maps, Group, Visual Language.

1 Introduction

The collaborative knowledge building covers various stages and actions that the
members of a group must carry out. Within this collaborative process of knowledge
building, a fundamental aspect is negotiation. This aspect becomes a social phenome-
non in which the members of the group agree on that knowledge which they consider
valid for the group. The valid knowledge of the group will correspond to the knowled-
ge previously negotiated and which the group will now accept as shared knowledge.
In this context, we find a scenario in which technological support can assume a
leading role. Computer-Supported Cooperative Work (CSCW) is an application field
that has dealt with this subject matter, initially orientated towards group decision
support systems (GDSS). Hence, negotiation can be seen through various approaches
[1]: voting, decision approval [2], access permission [3], intertwining of perspectives
[2]. Voting is the central mechanism in each of these approaches. Those who make
decisions do so on the basis of previous knowledge, which is considered valid by each

256 O. Herrera and D.A. Fuller

person individually. However, negotiation has much deeper and more complex
implications than simply deciding based on a vote. In learning environments, negotia-
tion in knowledge building acquires other connotations. Voting loses its prominence,
and now the process of knowledge building on the basis of negotiation among the
work group’s participants becomes the most im-portant. The new knowledge begins
to be negotiated, so each member shares in a reflective process, incorporating new
concepts into his preconceptions. The article proposes a model of knowledge building
for groups with a non-hierarchical structure, based on the negotiation of knowledge
between participants. Such negotiation and representation are carried out using a
visual language based on concept maps, reaping all the benefits of Ausubel and
Novak’s theory of learning [4]. In section 2 the representation diagram of knowledge
and its life cycle are described. In section 3 the aspect of knowledge negotiation is
dealt with in-depth. In section 4, general aspects of a prototype, which implements the
model, are described. Finally, some results and conclusions are presented.

2 Representation of Knowledge

2.1 Visual Language

In order for knowledge to be defined and subsequently used, it must be represented
explicitly. For this purpose, the proposed model defines a visual language based on
concept maps. A concept map is a graph that consists of a combination of labeled
nodes, linked by arcs, which may also be labeled. [5]. These were initially defined by
Novak and Gowing [6], who established that concept maps are a vehicle for repre-
senting on “paper” the neuron connections in our brain, which facilitates the unders-
tandding of the internal processes of the mind. The success of their use lies in their
simplicity and user-friendliness, due to the fact that human beings by nature have a
remarkable capacity for employing and interpreting symbols. Software like Belvedere
[13] uses this approach. This language has two main components: Concepts (nodes)
and Relationships (arcs). The group defines a knowledge domain in which will work.
For this domain, a project P is initialized, where P is defined as P = {CM}+, that is to
say, each project will be conformed by a finite group of one or more concept maps
CM. On the other hand, a conceptual map CM is defined as CM = <{C}+, {R}>, that
is to say, a tuple composed by a finite group of one or more concepts C and a finite
group of relationships R. Now, each concept C will have the form C = <N, M, E, {Q},
{A}, {L}>, where C is a tuple composed by a name N, a meaning M, one or more
examples E, a set of questions Q, a set of attached files A, and a set of links L to other
maps CM. Each one of these elements is specified as follows:

N = string, comprises a group of one or more descriptive words that explain the
concept C; M = string, refers to a description that defines the concept C within the
context in which the group is working; E = string, corresponds to one or more
examples that reinforce the meaning M of the concept C; Q = {p string / C gives
answer to p}, comprises a question, which can be responded by the information
related to the concept C which allows more flexibility and speediness in search
process; A = file, comprises one or more files attached to the concept C that gives

 Shared Knowledge: The Result of Negotiation in Non-hierarchical Environments 257

support to C; L = {e link / e links to another CM}, is a link that allows to connect the
concept with another concept map CM of the project P. In the same way, each
relationship R can be defined as R = <N, J, E, W, {Q}, {A}, {L}>, that is to say, a
tuple composed by a name N, a justification J, one or more examples E, a key word
W, a set of questions Q, a set of enclosed files A, and a set of links L to other maps
CM. The elements N, E, Q, A and L have the same meaning than the concept’s
elements. J = string, is the description that explains the reasoning behind the
relationship between the concepts in the knowledge field under study. W = string,
corresponds to a key word belonging to a lexicon [8] which models the types of links.

In figure 1, a concept map belonging to a project is showed. The concept map is
com-posed by three concepts and two relationships. Therefore, CM = <{Courseware,
Dis-tance Learning, Tools}, {Oriented, Include}>. In this case, the concept
Courseware is selected. On the right-hand side the elements associated with the
concept are shown: N = “Software package to supplement or replace traditional
course activities”, E = “WebCT and Learning Space are the most popular
coursewares”, A = {URI, URI, Document, Image, Document}, L, there are not links to
other maps for this concept.

Relationships are associated with certain semantic elements. On the one hand, the
author is free to impose any expression for labeling the relationship, and this
facilitates the creation and interpretation of knowledge [7]. On the other hand, the
author must select from a dictionary the type of relationship which he is creating, and
this facilitates the search for and inference of knowledge [8]. These semantics are
based on what Turoff propounds on the basis of a complete taxonomy of nodes and
links based on Guilford’s intellect theory [9]. Therefore, it become very easy to
introduce network analysis techniques and structural modeling methods that can be
applied to aid the users in getting a computer supported analysis of the web [10].

Fig. 1. Interface showing a concept and its associated elements

258 O. Herrera and D.A. Fuller

2.2 Interaction Model

We understand by knowledge in this context every concept, or relationship between
concepts, or structure of both, with theirs components. Figure 2 shows the life cycle
of knowledge, which defines the interaction model of the group.

Each of the arrows represents the taking of a decision, which causes the knowledge
to change its state. The life cycle of knowledge involves seven main states,
represented in figure 2 by the rounded rectangles. The initial state of knowledge is the
Proposal, which reflects the participant’s intention to incorporate new knowledge into
the shared knowledge repository. Whoever makes the proposal has control over it,
and is who decides whether to present it to the group or not. In this state, the
participant works from an individual perspective, incorporating those elements
determined by his own experience. In the Under Approval state, the knowledge is
subject to discussion. Here the components of the knowledge (name,
meaning/justification, examples, questions, attached files, links) can undergo
modifications derived from negotiation of the group. In the Under Revision state, the
participant who made the proposal submits the knowledge for review, incorporating
the changes derived from the negotiation. The states Approved, Outdating Process,
Outdated and Rejected are the outcome of the negotiation (for more detail, see [11]).

Fig. 2. Life cycle of knowledge defined by group interaction

3 Negotiation of Knowledge

Let us imagine a scenario in which a participant makes a proposal to the group, which
is negotiated and ultimately approved. Figure 3 shows a trace diagram which
describes the interaction that is produced from the time that a participant makes the
proposal until it is approved and incorporated as shared knowledge. The group revises
the proposal, suggesting changes to the participant who made it, or making comments
on the suggestions of other members of the group.

 Shared Knowledge: The Result of Negotiation in Non-hierarchical Environments 259

Fig. 3. Trace diagram of group negotiation to incorporate a knowledge proposal into the
repository of shared knowledge

Fig. 4. The possible actions with respect to participants’ proposals in the negotiation process

The participant who made the proposal assimilates changes as often as necessary
(cycle with a grey background in figure 3), until agreement is reached, allowing for
the incorporation of the proposal into the shared knowledge.

In the negotiation process, group participants can take various actions. Each
partici-pant individually makes relevant contributions within the group space (see
figure 4).

The model suggests a scaffolding to guide the discussion process through
categories of revisions: Request an Explanation (require the author to explain some

260 O. Herrera and D.A. Fuller

element included in the proposal), Suggest a Modification (it could corresponds to
writing/drafting, completion or correction of an idea, and incorporation of attached
files), Adopt a Position (voting). Once the user has voted, he cannot revise the
proposal, unless he withdraws his vote.

4 Prototype

All the elements corresponding to the group’s work are associated with a project.
A participant creates a new project and invites the rest of the group to join it. A

Fig. 5. Organization of the workgroups based on projects. The user is participating in two
projects (Groupware and Distance Learning), each with a different group.

Fig. 6. Interface showing a new proposal and the negotiation of the group

 Shared Knowledge: The Result of Negotiation in Non-hierarchical Environments 261

participant can have access to various projects: those he himself has created as well
those to which he has been invited. In the figure 5 two projects are shown in which
the user is participating (Groupware and Distance Learning).

Each project consists of three workspaces: Shared Knowledge, Group Space and
Private Space. The Shared Knowledge corresponds to the knowledge which the group
has already negotiated and which is considered valid knowledge. The Group Space
corresponds to the proposals that the group participants have submitted for discussion
and revision; and it is from here that proposals are admitted into the Shared
Knowledge. Each participant has a Private Space where he/she creates proposals
before submitting them for revision.

Each proposal is visible to the entire group. In figure 6 the revision interface of
user Ted’s proposal, called Courseware, can be seen, containing three new concepts
that are proposed for incorporation into the eLearning map. The participants can see
all the information associated with each concept and relation-ship. The proposal
continues to evolve according to the negotiation of the group. The author is
responsible for making the changes to the proposal until a consensus is arrived at.

5 Results and Conclusions

Some experiments, according to the traditional methods used in social sciences, were
done; meaning experiments with internal and external validity, so the results can be
generalized, trying to control possible variables that can be presented (history,
experience, selection, etc.). The experiment "pre-test, post-test with control group"
was used, which is one of the mostly used in these situations [12].

A summary of the results is presented. In order to demonstrate three different
hypothesis, we worked in parallel with a group of senior students majoring in
education and a group of students in computer science. A control group for each one
of these groups was considered. The first hypothesis refers to the knowledge building,
regarding quantity, quality and knowledge distribution. Preliminary results are:

 The groups that used the proposed model generated more documents, including
some written by themselves and some obtained from Internet and digital
libraries.

 The quality of the knowledge (evaluated by the professor) was similar.
 The group that used the model had a better mastery of the knowledge. In

addition, each student mastered the documents, while in the control group
certain documents were not known by some students in the group.

The second hypothesis aims to the availability of knowledge, regarding search
activi-ties, summary and material preparation in a collaborative form. Some results
were:

 All groups required face to face sessions to distribute the work.
 The groups that used the model had the information centralized. They

manifested more satisfaction with the access to the information than the control
groups.

 All groups delivered the total of the requested information.

262 O. Herrera and D.A. Fuller

The third hypothesis refers to the interaction of the group. The results were:

 The tool was classified by the students as friendly. It facilitates the interaction,
but puts bureaucratic obstacles when facing obvious decisions.

 Inside the university the performance of the tool is acceptable, but when
connected off campus the connection is slower.

 The model did not generate conflicts among the students.

For a work group, being able to define what can be considered shared knowledge is
an essential task within the collaborative effort. Furthermore, if the interaction of the
participants is made in an asynchronous distributed scenario, technology plays a very
important role. A model of knowledge negotiation for asynchronous non-hierarchical
environments has been presented, based on concept maps, which is given expression
in a computer tool. This focus allows members of a group working separately to cons-
truct knowledge in a particular field, reaping the very benefits presented by Ausubel
and Novak’s theory of learning. The first trials are being carried out with a group of
students in their final year of a program in the education field, who must develop their
degree-qualifying seminar. It is also being applied to a research group, which defines
fields of knowledge that form the basis of research projects and written articles.

References

1. Stahl, G. (2003). Negotiating Shared Knowledge in Asynchronous Learning Networks.
Proceedings of Hawaii International Conference on System Sciences (HICSS-36), USA.

2. Stahl, G. & Herrmann, T. (1999) Intertwining perspectives and negotiation, In: Procee-
dings of International Conference on Supporting Group Work (Group '99), Phoenix, AZ.

3. Wulf, V., Pipek, V., & Pfeifer, A. (2001) Resolving function-based conflicts in groupware
systems, AI & Society, 15, pp. 233-262

4. Ausubel, D. P., Novak, J.D. and Hanesian, H. (1978).Educational psychology: A cognitive
view. 2nd edition. New York: Holt, Rinehart, and Winston. Reprint, 1986.

5. Lambiotte, J., Dansereau, D. Cross, D. y Reynolds S. (1984). Multirelational Semantic
Maps. Educational Psychology Review 1(4): 331-367.

6. Novak, J., and Gowing, D., (1984) Learning How To Learn, New York, Cambridge
University Press.

7. Brown, E., & Chignell, M. (1995). End user as developer: Free-form multimedia. In
Edward Barrett and Marie Redmond (Eds.), Contextual media: Multimedia and
interpretation. MIT Press, Cambridge, MA: pp. 189–211.

8. Turoff, M., Rao, U., Hiltz, S. (1991) Collaborative Hypertext in Computer Mediated
Communications. Proceeding of the XXIV Hawaii International Conference on System
Sciences. Vol. IV, pp.357-366.

9. Guilford, J. (1967) The Nature of Human Intelligence. McGraw-Hill Publishers.
10. Lendaris, G. (1980), Structural Modeling: A Tutorial Guide, IEEE Transactions on

Systems, Man & Cybernetics.
11. Herrera, O., Fuller, D. (2000). Soporte al Proceso Colaborativo de Creación y Uso de

Conocimiento en Grupos con Estructura no Jerárquica. Proceedings de la XXVI
Conferencia Latinoamericana de Informática, CLEI 2000, Septiembre, México DF.

12. Campbell, D. T., Stanley, J.C. (1977) Experimental and quasi-experimental designs for
research. Rand McNally College Publishing Co., Chicago, IL.

13. Paolucci, M., Suthers, D., Weiner, A. (1995) Belvedere: stimulating students' critical
discussion. Proceeding of Conference on Human Factors in Computing Systems, pp 123 –
124, Denver, Colorado, United States.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 263 – 270, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Mediation Model for Large Group
Collaborative Teaching

María Ester Lagos, Miguel Nussbaum, and Francisca Capponi

Department of Computer Science,
P. Universidad Católica de Chile, Santiago, Chile

mn@ing.puc.cl

Abstract. The incorporation of computer resources into the classroom has
given rise to the need for understanding how such technology can be used to
achieve effective teaching practices. Collaborative learning aided by wirelessly
connected mobile computers is a work mode that has generated benefits for
student learning in small-group activities. It is therefore of interest to
investigate whether these benefits are also present when working in large
groups such as an entire class. This paper proposes a Mediation Model for
Large Group Collaborative Teaching based on the interactions that occur
between the components of a classroom technologically mediated using
wirelessly connected mobile devices. A particular case of the model is
presented, followed by an example of it in the form of a collaborative activity.

1 Introduction

The mobility and size afforded by handhelds (PDAs) facilitates their utilization in any
classroom or other location on school premises, meaning that they can be employed
more extensively than PCs installed in a laboratory [7]. Thus, from occasional use as
a computer supplement they can transition to a frequent and integrated role [4].

Roschelle et al. [6] have suggested a taxonomy for wirelessly connected handheld
devices that reveals their impact on face-to-face collaboration and how they influence
learning, motivation, commitment and the development of mutual understanding.
Complementing the foregoing, Zurita and Nussbaum [9] have demonstrated that
wirelessly connected mobile devices support collaborative activity by supplying a
space for negotiation and coordination between the different states of an activity
through the mediation of participants’ synchronization and interactivity.

However, the benefits of wirelessly connected mobile devices have only been
demonstrated for learning by students in small groups, where building discussion and
consensus is much simpler to achieve [8]. It remains an open question whether these
benefits are also obtainable by large groups such as a whole classroom. If so, it would
permit the development of more robust and more varied ideas [5] and enable a diversity
of visions on the part of the students and a richer pedagogical labor by the teacher [2].

To understand how this technology can be used in collaborative teaching with large
groups, we must investigate the interactions that emerge between the components of a
classroom (teacher, students, groups, etc.) and the incidence of group size on the

264 M.E. Lagos, M. Nussbaum, and F. Capponi

students’ work and learning, so that mediation between the components can then be
utilized to create a classroom in which the students collaborate effectively.

The present study proposes a Mediation Model for Large Group Teaching based on
the interactions that arise among the components of a classroom that is
technologically mediated by wirelessly connected mobile devices. A particular case of
the model is also presented and illustrated by an example application.

2 Mediation Model

Our Mediation Model assumes interaction to be the basic unit that occurs among vari-
ous actors in a classroom with technological support. The roles of the different actors
in the established dynamic will have to be elucidated and the requirements for imple-
menting a given mediation model in the classroom will then be determined.

To define how and between whom information flows in a classroom technologi-
cally mediated by mobile devices connected to a wireless network, we define an In-
teraction Model for the main classroom components (see Fig.1).

Fig. 1. Interaction Model

The components of the model as shown in Fig.1 are the following:

• Actors: Persons or groups of persons among whom information flows. They are in-
formation emitters and receptors, and include:

o Student (S)
o Whole Class (WC), comprising the N students in the class
o Small Group (SG), a subset of S students in the class, which consists of N/S

groups

• Mediators: The entities through which the information flows. Since the information
is transformed in the process, they are more than just communication channels:
o Personal Digital Assistants (PDA). PDAs act as instruments that support and

regulate relations between actors, and provide:
 organization of the information
 a negotiation space
 coordination between activity states

o Face-to-face relationships (FF). The human medium in which information is
exchanged, impacting on the students’ commitment to their responses and
their group as well as on the development of mutual understanding between
the different actors.

 A Mediation Model for Large Group Collaborative Teaching 265

• Actor and mediator: Teacher (T). In addition to sending and receiving information,
the teacher is responsible for electing the curriculum activities to be implemented
and for guiding the students toward the achievement of the desired goals. The
teacher is also in charge of delivering feedback to the students and filtering the in-
formation flowing between them and among the groups in such a manner that the
discussions take the desired course.

The interactions in the model, as shown in Fig.1, are centered on the student and
use PDAs and a face-to-face relationship (FF) as mediator components for the interac-
tions with the other actors: the teacher (T), the small group he or she belongs to (SG)
and his or her class (WC). The teacher also acts as mediator of the interaction and
communication between the students (S), the small groups (SG) and the class (WC).
The arrows connecting the components indicate the direction of information flow.

The set of valid interactions in the model is enumerated below:

T PDA S : Teacher sends information to student in form of question or exercise.
T PDA SG : Teacher sends information to small group in form of question or exercise.
T PDA WC : Teacher sends information to class in form of question or exercise.
T FF S : Teacher speaks with student to explain or mediate a specific point.
T FF SG : Teacher speaks with a specific small group, mediating its concerns.
T FF WG : Teacher speaks with whole class to give a general explanation.
SG PDA S : Small group sends information to student to exchange coordination infor-

mation.
SG PDA T : Small group sends information to teacher in response to question sent.
SG FF S : Small group discusses with student to exchange ideas and arrive at agreed

response.
SG FF T : Small group speaks with teacher to request information, an explanation or

his/her mediation.
S PDA T : Student sends information to teacher in response to question or exercise

sent.
S FF T : Student discusses or requests information or help from teacher.
S PDA SG : Student sends information to small group to exchange coordination infor-

mation.
S FF SG : Student discusses with small group to which he/she belongs to arrive at

agreed response and/or for asking help.
S FF WG : Student discusses with class to defend his/her response or that of his/her

group and/or to support a given student.

Note that the relation of student to student is included within the relation between
student and small group or within the relation between student and whole group.

These interactions are the key element in understanding the individually and
group-generated learning process. They also show that in a technologically mediated
classroom with wirelessly connected mobile devices, three work modes can be im-
plemented: individual mode (I), small group mode (SG) and whole class mode (WC).

The individual work mode (I) teaches the student individual responsibility by re-
quiring him or her to justify his or her work to the teacher and the next work unit, the
small group and/or the class group. In this mode interactions occur between the stu-
dent (S) and the teacher (T).

The small group work mode (SG) is useful for various reasons. First, by emphasiz-
ing learning in peer groups the teacher will have more time to help students who are
having difficulties and to assign enrichment activities to students who have already

266 M.E. Lagos, M. Nussbaum, and F. Capponi

mastered the prescribed material. Second, it gives teachers greater flexibility to adapt
the learning and teaching objectives to individual learning needs. Third, students who
learn together in small groups may be motivated toward cooperation instead of com-
petitiveness. Fourth, the obligation and the opportunity to work with others in order to
learn allows students to develop social and communication skills [1].

The whole class work mode (WC) teaches both individual and group responsibility.
Each student assumes responsibility for his or her response to the class, and the class
response is then built from those given by the individual students as mediated by the
teacher. However, because the teacher must attend to the needs of a whole class, the
emphasis is on uniformity rather than diversity and individual explanations [1].

In short, we may distinguish three work modes (see Fig.2): individual work (I),
collaborative work in small groups (SG) and collaborative work involving the whole
class (WC).

Taken together, the work modes (Fig.2) and the set of possible interactions (Fig.1)
generate a number of possible classroom work sequences as shown in Fig.3:

Fig. 2. Classroom work modes

Fig. 3. Classroom work sequences

In the individual work mode (I), information is sent and received by the teacher
through the technological network and his or her mediation in person with the student.
In the small group work mode (SG), sending and receiving information between the
teacher and the group also takes place through the technological network.
Collaborative work in this case takes the form of face-to-face discussion generated by
exchanging information for purposes of coordination, synchronization and
negotiation, technologically mediated by PDAs. Finally, in the whole class work

 A Mediation Model for Large Group Collaborative Teaching 267

mode (WC), student voting and the justification of responses to the class as mediated
by the teacher are the basis for group discussion [3]. These characteristics of the three
modes can be generalized in the form of the model displayed in Fig.4.

Fig. 4. Classroom Mediation Model

The interaction flows observable in Fig.4 are as follows:
1) T S: The teacher chooses a subject and sends certain information to the students, who

may ask a question..
2) S T: The students send the teacher responses that express their individual positions.
3) T SG: Small groups are created and the teacher sends each group information resulting

from the individual work. (Discussion takes place within the groups.)
4) SG T: Each group sends its response to the teacher.
5) T S: The teacher chooses certain responses from those received and sends them to the

students.
6) S T: The students vote on the responses.
7) T S: The teacher sends a justification notice to a randomly chosen student regarding his

or her response.
8) S T: The student justifies his or her response to the class, with the teacher mediating.
Feedback from the cycle (return to first step until teacher decides to end the activity).
9) T S: The teacher sends the students a summary containing the main ideas of the subject

the students worked on.

In the mediation model in Fig.4, the three work modes can be observed as one
moves from left to right: individual (steps 1 and 2), small group (steps 3 and 4), and
whole class (steps 5 through 9). The order of the steps is not strict, however. The se-
quence in Fig.4 is presented in such a manner that the activity displays a logical flow,
and is intended as a proposed ordering of the interactions that preserves the natural
flow of the classroom activity.

3 An Example of the Mediation Model

To illustrate the application of the Mediation Model in Fig.4, we analyze a subset of it
in which the teacher works with students individually and then with the whole class,
without using small groups (see Fig.5).

The example we use for this illustration is an activity designed to teach students
about sound in the context of a physics course at the secondary school level. The pur-
pose behind the activity is to get the students to discover the relationships between the
various characteristics of phenomena such as vibration, reflection, light, frequency,

268 M.E. Lagos, M. Nussbaum, and F. Capponi

and wave by using sound as a unifying concept. Thus, the work model involves relat-
ing content through concepts and characteristics. The students must match a concept
to characteristics sent to them by the teacher, and then hold a group discussion using a
voting mechanism mediated by the teacher to eliminate responses that do not match.

Fig. 5. Example of Mediation Model

We now analyze this application by following the flow of interactions.

1) T S: The teacher chooses a subject and the concept to be found, and then sends
each student a characteristic (Fig.6a).

2) S T: Each student sends the teacher his or her response, that is, the concept that
matches the characteristic received. Fig.6b shows the introductory screen seen by
the students upon receiving the activity, while Fig.6c, d and e display the screens
of three different students in which they must write the concept they believe
matches the indicated characteristic.

Fig. 6. Individual Work

Fig. 7. Class Work – Voting

 A Mediation Model for Large Group Collaborative Teaching 269

3) T S : The teacher chooses certain of the responses received and sends them to all
students in the class (Fig.7a). Then on each student’s screen there appears the
characteristic he or she had originally received and the list of responses sent by the
teacher for reconsideration (Fig.7b, c, d).

Each student must then eliminate the concepts that do not match the characteris-
tic on the screen. But now they see the responses of their classmates and thus have
a broader view of the problem. They then decide whether to reaffirm or change
their original response. Student No. 1, for example (see Fig.7b), will see that
“light” is the incorrect concept and vote to reject it by pressing the “OK” button.

4) S T: The students vote either for a response they want to eliminate or for the cor-
rect response, depending on the specific case. Both the teacher (Fig.8a) and the
students (Fig.8b, c, d) see a graphic on their screen showing the votes obtained for
each concept.

5) T S : The teacher (Fig.8a) then chooses at random one of the students who voted
for a given concept and sends him or her a justification notice requiring that he or
she justify that vote, thereby stimulating a dialogue with the class (“JUSTIFY”
button).

6) S T: The randomly chosen student is notified by the appearance of a red screen
on his or her PDA (Fig.8c). The student then justifies his or her response to the
whole class, thus initiating a class discussion.

7) T S: The teacher sends the students a summary containing the main ideas of the
subject the students worked on. Once feedback has taken place, the teacher sends
the students new characteristics relating to the concept they must find, and the stu-
dents have the option of adding the correct concept if it is not on the list of re-
sponses given by his or her classmates.

Fig. 8. Class Work – Discussion

4 Conclusions

We have presented a general model of technological mediation for the classroom that
was designed on the basis of the possible interactions. The model enables us to design
collaborative activities both for small groups and a whole class, incorporating individual
work as one more element. This characteristic is not generally found in CSCL studies.

The Mediation Model given in Fig.4 constitutes a contribution for teachers because
it demonstrates how technology can be used to mediate interactions between actors in

270 M.E. Lagos, M. Nussbaum, and F. Capponi

the classroom. It enables activities to be designed to fit the curriculum while develop-
ing social and communication abilities among students.

Progress on our research is currently in the implementation stage of the educational
application described in this paper. This and other examples will be validated so as to
obtain a set of such applications that will allow us to draw both quantitative and
qualitative conclusions regarding the support provided by wirelessly connected PDAs
to the set of valid interactions we have defined.

Acknowledgments

This work was partially funded by FONDECYT grant 1040605.

References

1. Abrami, P., Lou, Y., Chambers, B., Poulsen C. & Spence, J. (2000). Why Should we Group
Students Within-Class for Learning? Educational Research and Evaluation, Vol. 6, No.2,
pp. 158-179.

2. Hegedus, S. and Kaput, J. (2002). Exciting new opportunities to make mathematics an ex-
pressive classroom activity using newly emerging connectivity technology.

3. Mazur, E. (1997). Peer Instruction: A user's manual. NJ: Prentice Hall.
4. Roschelle, J., & Pea, R. (2002). A walk on the WILD side: How wireless handhelds may

change computer-supported collaborative learning. International Journal of Cognition and
Technology, 1(1), 145-168.

5. Roschelle, J., Abrahamson, L. & Penuel, W. (2004). Integrating Classroom Network Tech-
nology and Learning Theory to Improve Classroom Science Learning : A Literature Synthe-
sis. Paper presented at the Annual Meeting of the American Educational Research Associa-
tion, San Diego, CA, April 16, 2004.

6. Roschelle, J., Rosas, R. & Nussbaum, M. (2005). Towards a Design Framework for Mobile
Computer-Supported Collaborative Learning. Computer Supported Collaborative Learning
Conference, Taiwan, July 2005.

7. Vahey, P., & Crawford, V. (2002). Palm Education Pioneers Program: Final Evaluation Re-
port. Menlo Park, CA: SRI International.

8. Zurita, G. (2003). CSCL Activities and Mobile Technology. Thesis submitted to the Office
of Research and Graduate Studies in fulfillment of the requeriments for the Degree of Doc-
tor in Engineering Sciences, Pontificia Universidad Católica de Chile.

9. Zurita, G., & Nussbaum, M. (2004). mCSCL: Mobile computer supported collaborative
learning. Computers & education, 42(3), 289-314.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 271 – 283, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Analyzing the Organization of Collaborative Math
Problem-Solving in Online Chats Using Statistics and

Conversation Analysis

Alan Zemel1, Fatos Xhafa2, and Gerry Stahl3

1 The Math Forum, Drexel University, 3210 Cherry Street,
Philadelphia, PA, USA
arz26@drexel.edu

2 The Open University of Catalonia, Barcelona, Spain
fxhafa@uoc.edu

3 College of Information Science and Technology,
Philadelphia, PA, USA

gerry.stahl@cis.drexel.edu

Abstract. In this paper we describe how a statistical test on a hypothesis
regarding collaborative math problem solving using online chats showed an
unexpected result, whose understanding required the use of qualitative methods.
The phenomenon behind the result is identified using Conversation Analysis.
This paper demonstrates the importance of using qualitative methods to
describe the perspective of participants as a way of interpreting statistical
results, revising hypotheses and developing alternative coding schemes and
procedures. The combined approach of quantitative and qualitative methods is
applied on real data coming from Virtual Math Teams research project (Drexel
University) and is identifying issues not addressed so far in the analysis of
online collaborative group activity.

1 Introduction

The analysis of the use of groupware is particularly problematic. Most methods of
human-computer interaction were developed for single-user systems and are not
applicable to computer mediation of group interaction. A common approach to
analyzing the use of groupware is to compare statistical measures of usage across
conditions or cases. However, this can be criticized for not investigating and taking
into account qualitative differences that may be crucial to understanding the
quantitative differences [1]. While there is a widespread feeling that fields like CSCL
and CSCW need to take a multidisciplinary approach incorporating a variety of
analytic methods, it is difficult to see how quantitative and qualitative approaches
built on fundamentally incompatible theoretical foundations can work together. This
paper reports a case in which a quantitative discovery led to qualitative analysis that
explained the significance of the quantitative results and suggested modifications of
the quantitative approach.

272 A. Zemel, F. Xhafa, and G. Stahl

In the Virtual Math Teams (VMT, [2]) project at Drexel University, we investigate
online problem-solving chat interactions from a variety of analytical and
methodological perspectives. On the one hand, a coding scheme has been developed
and applied to logs of online chats among actors participating in math problem
solving. This provides a basis for a quantitative analysis of the chat logs. On the other
hand, conversation analytic methods have been applied to these chat logs as a way of
describing the procedures participants use to make sense of their ongoing activity.

Conversation analysis (CA) and statistical analysis (SA) are uneasy partners in the
analytic enterprise. These two orientations to analysis derive from very different
perspectives on the role of the analyst and the kinds of assumptions that can be made
with respect to the data and its interpretation. In statistical analysis, hypotheses are put
forward and tested. Coding schemes are devised which are designed to facilitate the
testing of these hypotheses and statistical methods are applied to coded data. In this
approach, it is the analyst’s perspective that is privileged. The analyst:

• proposes the hypotheses,
• produces the coding scheme to capture the relevant data from an experiment

designed specifically to allow for testing of the hypothesis, and
• assesses and interprets the statistical results [3].

Statistical analysis of data gathered from online collaborative learning experiments
plays a central role in many CSCL studies [4], [5], [6], [7]. A whole range of
statistical methods, from descriptive statistics to multilevel and other sophisticated
methods have been used to analyze the underlying features (variables) of the
collaborative activity that takes place in a small group.

Conversation analysis, on the other hand, is an analytical methodology that
attempts to describe the actions of participants in terms of the relevances
demonstrated by participants in and as their interaction [8], [9]. This methodology
privileges the perspective of the participants over the analyst’s perspective [10].
Actions are seen as situated within a stream of ongoing action and are sequentially
organized. Furthermore, conversation analysts presume that actors design and
‘customize’ their action for the particular circumstances in which they are
accomplished.

The differences between SA and CA are consequential. For statistical analysts,
validity and reliability are significant concerns. These are not concerns for
conversation analysts. Conversation analysts are concerned with providing adequate
descriptions of the sense-making procedures used by participants as they interact.
Where statistical analysts would discover what might be ‘present’ as frequently
observed regularities in interactions, conversation analysts are concerned with how
specific actions are made relevant by prior actions and how a current action make
relevant subsequent actions over the course of a particular sequence of actions. For
conversation analysts, it is sufficient that the participants in a particular interaction
treat their ongoing actions as sensible. The conversation analyst’s task is to describe
these sequences of actions as sense-making procedures.

While these two types of analysis, statistical and conversational, may seem
incompatible, it turns out there are circumstances in which they can be mutually
informative [11]. In this paper, we describe a situation in which a puzzling statistical

 Analyzing the Organization of Collaborative Math Problem-Solving 273

result was made intelligible by conversation analytic investigation. This is a novel
approach to analyze the organization of the interaction in collaborative math problem-
solving activities in online chats. Indeed, existing approaches in the literature treat
quantitative and qualitative methods separately. Our results show the strength of using
a combined approach. Specifically, by using a quantitative approach, we detected an
unexpected result in a hypothesis test. This made further investigation necessary. The
qualitative method enabled us to identify the phenomenon that produced the
unexpected result in the hypothesis test.

2 Data Collection

The Virtual Math Teams (VMT, [2]) project at Drexel University investigates small
group collaborative learning in mathematics. In this project an experiment is being
conducted, called powwow, which extends The Math Forum’s (mathforum.org)
“Problem of the Week (PoW)” service. Groups of 3 to 5 students in grades 6 to 11
collaborate online synchronously to solve math problems that require reflection and
discussion. AOL’s Instant Messenger software is used to conduct the experiment in
which each group is assigned to a chat room. Each session lasts about one to one and
a half hour. The powwow sessions are recorded as chat logs (transcripts) with the
handle name (the participant who made the posting), timestamp of the posting, and
the content posted.

2.1 Coding Scheme

Both quantitative and qualitative approaches are employed in the VMT project to
analyze the transcripts in order to understand the interaction that takes place during
collaboration within this particular setting. A coding scheme has been developed in the
VMT project to quantitatively analyze the sequential organization of interactions
recorded in a chat log. The unit of analysis is defined as one posting that is produced by
a participant at a certain point of time and displayed as a single posting in the transcript.

The coding scheme includes nine distinct dimensions, each of which is designed to
capture a certain type of information from a different perspective. They can be
grouped into two main categories: one is to capture the content of the session whereas
another is to keep track of the threading of the discussion, that is, how the postings are
linked together. Among the content-based dimensions, conversation and problem
solving are two of the most important ones which code the conversational and
problem solving content of the postings. Related to these two dimensions are the
Conversation Thread and the Problem Solving Thread, which provide the linking
between postings, and thus introduce the relational structure of the data. The
conversation thread also links fragmented sentences that span multiple postings. The
problem solving thread aims to capture the relationship between postings that relate to
each other by means of their mathematical content or problem solving moves (see
Figure 1).

Each dimension has a number of subcategories. The coding is done manually by 3
trained coders independently after strict training assuring a satisfactory reliability.

274 A. Zemel, F. Xhafa, and G. Stahl

Regarding the statistical approach, this paper considers 4 dimensions only; namely the
conversation, problem solving, social reference, math move and system support
dimensions.

Fig. 1. A coded excerpt from Pow2a

2.2 Data Collection

The sample used in this study consisted of six powwows that were chosen from a
larger set of powwows with the aim at conducting a first data analysis. The criteria
for choosing the sample is based on one of the characteristics of the powwow
experiment, namely, for some powwows the math problem was announced in
advance while for some others the math problem was announced just at the time of
starting the chat session1. Thus, the sample of six powwows is made up of three
powwows in which the math problem was announced at the beginning of the session,
whereas in the rest the problem was posted on the Math Forum’s web site in advance2
(see Table 1). It should be noted that for the math problem being announced in
advance doesn’t necessarily mean that the participants of the chat already solved the
problem in advance.

Table 1. Description of the coded chat logs

1 We will refer to this as “known – not known” criterion.
2 We will refer to the first group as “NO group” and to the second as “YES group.”

 Analyzing the Organization of Collaborative Math Problem-Solving 275

3 Statistical Analysis

3.1 First Level: Statistical Analysis Based on Main Dimensions

Our first objective was to test whether there is any significant effect of the “known –
not known” criterion on the sample of the powwows. To this end, we started by
computing3, through descriptive statistics, the distribution of frequencies in different
dimensions (Conversation, Social Reference, Problem Solving, Math Move and
System Support) for the six Powwows and used Means and ANOVA4 to test the
existence of significance difference due to the “known – not known” criterion. The
study showed that there was no such effect, at a usual confidence level of 95% (in
fact, significance in differences, that is significant pairs, were not noticed even at 90%
confidence level). The fact that there is no clear effect of the criteria “known – not
known” allows us to conclude that the classification of the sample of Powwows into
groups according to “known – not known” criterion is not relevant. We could also
observe this by computing the Boxplot representation of the variables under study
(see Figure 2).

Fig. 2. Boxplot representation of Problem Solving and Math Move dimensions

Given the above finding, we refined the statistical analysis by looking at the
correlation between vectors of values of the six powwows (grouping “known – not
known” was now maintained just for visual effect). By computing similarities
between the powwows we could see which powwows are similar to each other and
which are different from each other. We computed thus the correlations (Pearson
correlations) through proximity matrix shown in Table 2.
From Table 2 we observe the following:

a) Pow2b (3:NO in the table) is negatively correlated to the powwows of the
NO group (pow1 and pow2a) and positively correlated to the powwows of
the other group (pow9, pow10, pow18). Moreover, significant correlation of
pow2b with pow10 (5:YES) and pow18 (6:YES) is observed and not
significant correlation with the pow9 (4:YES).

3 The statistical computations are done in SPSS 12.0.
4 Note that the different dimensions are independent of each other.

276 A. Zemel, F. Xhafa, and G. Stahl

Table 2. Pearson Correlation of Vector Values of Six Powwows

Proximity Matrix

Correlation between Vectors of Values
 1:NO 2:NO 3:NO 4:YES 5:YES 6:YES
1:NO 1.000 0.756 -0.452 0.567 0.108 -0.197
2:NO 0.756 1.000 -0.219 0.912 0.603 0.067
3:NO -0.452 -0.219 1.000 0.202 0.620 0.956
4:YES 0.567 0.912 0.202 1.000 0.867 0.470
5:YES 0.108 0.603 0.620 0.867 1.000 0.791
6:YES -0.197 0.067 0.956 0.470 0.791 1.000

This is a similarity matrix

b) There is a significant positive correlation of the pow9 with pow1 and pow2a of
the NO group. In pair wise terms, pow9 is more correlated to the powwows of
the NO group than to the powwows of the YES group (its group).

c) There are some pairs of powwows positively and strongly correlated, namely
(powwow2a, pow9) and (pow2b, pow18) which suggest taking a closer study
of the possible common features of these powwows.

The previous observations on the correlations between powwows from different
groups not only supports the claim that there is no significant effect of the “known –
not known” criterion but also shed light on the reason why these two groups are not
really separated. Indeed, the negative correlation of the pow2b with the powwows of
the NO group shows that its place is not in the NO group. Even more, its positive
correlation with the powwows of the YES group indicates that this powwow is better
grouped with the powwows of the YES group.

In our next step, we decided to exclude the System Support dimension from the
analysis; indeed, this dimension is less relevant in the context of the interaction
analysis and could have thus introduced some noise in the analysis. We run again the
statistical computations by re-computing the correlations through proximity matrix as
shown in Table 3.

Table 3. Pearson Correlation of Vector Values of Six Powwows (system support excluded)

Proximity Matrix

 Correlation between Vectors of Values

 1:NO 2:NO 3:NO 4:YES 5:YES 6:YES
1:NO 1.000 0.999 -0.427 0.868 0.376 -0.145

2:NO 0.999 1.000 -0.396 0.884 0.407 -0.112

3:NO -0.427 -0.396 1.000 0.080 0.678 0.957

4:YES 0.868 0.884 0.080 1.000 0.787 0.366

5:YES 0.376 0.407 0.678 0.787 1.000 0.862

6:YES -0.145 -0.112 0.957 0.366 0.862 1.000

This is a similarity matrix

 Analyzing the Organization of Collaborative Math Problem-Solving 277

By excluding the System Support dimension, we observe a clear effect on the
correlations, namely:

a) On the one hand, an increased negative correlation of the pow2b (3:NO) with
the powwows of its group (pow1 and pow2a, 1:NO and 2:NO, respectively) is
now observed. Notice also that the correlation between pow1 and pow2a is
almost perfect correlation. One the other hand an increased positive correlation
of the pow2b (3:NO) with the powwows of the other group (pow9, pow10,
pow18) is observed. Interestingly, pow2b is now less correlated to pow9
(4:YES in the table).

b) An increased positive correlation of Pow9 with the powwows of the NO group
(pow1 and pow2a) is now observed. Moreover, we observe a decrease in its
correlation with pow10 and pow18.

c) Finally, pow18 is now negatively correlated to both pow1 and pow2a.

We repeated the above computations by standardizing the variable values by z-score.

Table 4. Proximity Matrix

 Correlation between Vectors of Values

 1:NO 2:YES 3:YES 4:NO 5:YES 6:YES
1:NO 1.000 .987 -.999 .869 -.921 -.993
2:NO .987 1.000 -.977 .778 -.845 -.999
3:YES -.999 -.977 1.000 -.894 .939 .986
4:NO .869 .778 -.894 1.000 -.993 -.808
5:YES -.921 -.845 .939 -.993 1.000 .870
6:YES -.993 -.999 .986 -.808 .870 1.000

This is a similarity matrix

According the statistical computations indicated above, the powwows show the
following two clusters:

Cluster 1: (pow1, pow2a, pow9)
Cluster 2: (pow2b, pow10, pow18)

By re-computing5 the Boxplot representation of this new clustering we could observe
the significant separation between variables under study for the two groups (see
Figure 3).

In other words, we expected the chat logs to be clustered based on the idea that in
some chats, participants had access to the problem prior to their participation in the
chat, while in other chats, participants had no access to the problem. However, the
statistical analysis demonstrated that the clustering of chats was organized according
to some other basis. At this point, we determined to conduct a qualitative approach to
identify the reasons for this alternative organization of the online chats.

5 Compare to Figure 2.

278 A. Zemel, F. Xhafa, and G. Stahl

Fig. 3. Boxplot representation of Problem Solving and Math Move dimensions

4 Participation Frameworks and the Organization of Online
Interaction

To discover possible reasons for the failure of our initial hypothesis, we reexamined
the chats using Conversation Analysis (CA). With this approach, we examined logs
of the online chats to identify participants’ perspectives on their own actions with an
eye to describing their actions as sense-making procedures. The work of conversation
analysis involves close inspection of interactional data. In conventional face-to-face
interaction, this involves inspecting video and audio recordings of interaction. When
it comes to online chats, logs of the chats, which display the text postings of
participants and the time stamp associated with each posting, are the data that are
inspected.

“Conversation analysis studies the order/organization/orderliness of social action,
particularly those social actions that are located in everyday interaction, in discursive
practices, in the sayings/tellings/doings of members of society” ([9], p.2). The object
of inquiry in conversation analysis is not exclusively conversation per se, but rather
talk and social interaction. Thus, as Ten Have describes, “CA’s interest is with the
local production of [social] order and with ‘members’ methods’ for doing so”
([8], p.19).

Using the methods of CA, we began to notice that the organization of social order
in these chats could be differentiated according to the way that participants oriented to
the production of problem solutions. In particular, we noticed that, in some
circumstances, participants reported on work they had already completed, whether it
was work done prior to the chat or work done offline and without the participation of
others in the production of that work during a chat. This organization of participation
we have termed expository participation. On the other hand, we noticed that there
were circumstances in which participants engaged each other in the conjoint discovery
and production of both the problem and possible solutions. This organization of
participation we termed exploratory participation.

Expository participation in the chats we examined involved one actor producing a
report as an extended narrative of an activity performed by that actor. Such reporting
is designed to project recipient participation in terms of the production of assessments

 Analyzing the Organization of Collaborative Math Problem-Solving 279

of the report or the reported work. Recipients of that report have not participated in
the work being reported. The report is designed and presented either as an already
achieved understanding of the problem in terms of a candidate solution or as steps
anyone with appropriate understanding of the problem might take to produce a
solution. One version of expository participation is where one actor first announces
that a solution has been achieved and then, upon prompting from recipients, proceeds
to tell recipients what the solution is and how he or she produced the candidate
solution. For example, an actor might report something like: “I’ve got the answer”
which calls upon recipients to solicit the result. Announcing a result makes it relevant
for recipients to ask for an explanation. Explanations might be offered in ways that
describe the production of the solution as having been already achieved by the actor
reporting the result, as in, “First I did … and then I computed … which equals …”
Another way to produce an explanation involves the circumstance where an actor
describes how a competent person would go about solving the problem, as in “First
you do … then you compute … which equals …” In this regard, these approaches to
the exposition of a problem’s solution is much like the telling of a story (see e.g.
[12]). This is illustrated in the chat excerpt below:

24 AH3 I think I have the solution!
25 REA what
26 MCP I guess 15
27 REA k
28 MCP I think it's like the Pythagorean idea, applying to triangles.
29 AH3 sqrt(5^2 + 7^2) = sqrt(74)
30 MCP Yes, 30-60-90 is needed fact
31 AH3 The solution is sqrt(74)
32 REA how
33 MCP 7?
34 AH3 Go to...
35 AH3 http://mathforum.org/dr.math/faq/form ulas/faq.triangle.html
36 AH3 Under scalene triangle, the formula for the area of any triangle is...
37 AH3 K = a^2 * sin(B) * sin(C)/[2 sin (A)]
38 AH3 Why is that smiley their
39 AH3 K = a^2 * sin(B)* sin(C)/[2 sin (A)]
40 AH3 Where a = an edgelength of an isosceles triangle

Fig. 4. Example of Expository Chat (Powwow 2b)

An expository report is a way that an actor constitutes a problem as solvable. This
is, in fact, a position we support because there is evidence in the transcripts that actors
themselves orient to these reports in just this way. For example, the actor producing
the report treats the problem as having already been solved and thereby constitutes a
participation framework in which that he or she acts in the manner of an instructor,
explaining what is already known by the instructor to an audience that presumably
does not yet know. Constituting such a participation framework is a delicate business

280 A. Zemel, F. Xhafa, and G. Stahl

in the conduct of these chats. To do so, actors often draw upon the resources of news
reporting by indicating they have something newsworthy to report, i.e., the solution to
the problem. The actor reporting the solution designs his or her report in a way that
allows the recipients of the report to “discover” in the report how the problem can be
seen as solvable and solved.6

Exploratory participation, on the other hand, involves participation in which actors
interact so as to constitute, in and as their chat, an understanding of a problem in
terms of the conjoint production of possible organizations of mathematical activity
from which a solution could be achieved. In such circumstances, actors use the
resources afforded them by their interaction to constitute the math problem and their
understanding of that problem as an emergent sequence of possible and/or achieved
math activities designed to produce what may come to be subsequently recognizable
and treated as a solution to the problem. If expository participation is a form of
“news” reporting, then the distinguishing feature of exploratory participation is that
the actors themselves are constituting the “news” as their ongoing interaction rather
than reporting it and receiving the report. This is shown below:

119 MCP What's this extra saying? Like, if both of the smaller triasngles are sitting
on their bases, the base of one is 5 and the base of the other is 7?
Is that the interpretation?

120 REA I guess it is 10
121 MCP If they're oriented with corresp angles in corresp locations?
122 REA or should I say 9.8
123 REA what do you think
124 REA i used the proportions
125 MCP Oh, I guess this is where that 7 from AH3's answer came from,

way back there. I didn't know where that came from.
126 MCP I still need to make sure I know what the wording is saying. Am I interpreting

the q right?

Fig. 5. Example of Exploratory Chat (Powwow 2b)

Actors engaged in exploratory work do not have a solution in hand as they do
when they are engaged in expository work. Instead, they work to discover ways to
produce such a solution by 1) allocating participation among actors in the chat and 2)
by constituting and drawing on resources for producing a solution that are distributed
among participants and which are made available by actors’ participation in the chat.
Like expository participation, the work of exploratory participation also constitutes
the problem in terms of its solution, but with exploratory participation the solution is
not yet known to participants. Exploratory interactions involve putting forward
proposals for consideration and assessment, negotiating ways of formulating the
problem in terms of different solution strategies, quick exchanges among multiple
participants rather than extended postings, etc. Thus the work of exploration involves
something developing alternative understandings of the problem in terms of the
development and assessment of alternative possible solutions.

6 This is similar to the way Livingston finds mathematicians doing proofs [13].

 Analyzing the Organization of Collaborative Math Problem-Solving 281

It is important to note that expository and exploratory work may be done during the
same chat. Furthermore, expository participation requires that the expositor did the
work of producing a solution “offline,” i.e. without the participation of other actors in
the chat. One of the affordances of chat is that “offline” activities are possible even as
a chat is occurring because participants only have access to the messages they post.
An actor’s work with a pencil and a pad of paper beside his or her computer is not
available to others unless and until it is posted in the chat system.

By examining the Powwow chats, we were able to see that there were considerable
differences in the way participation was organized. Despite the fact that actors in
Powwow 2b had not seen the problem in advance of their chat, they did their work
“offline” during the chat and displayed an expository organization of participation in
common with Powwows 10 and 18. Despite the fact that the actors in Powwow 9 had
access to the problem in advance of the chat, they displayed an exploratory
organization of participation in common with Powwows 1 and 2a. Thus, using CA,
we were able to identify the same relation among the powwows showed by the
statistical analysis and, moreover, explain the phenomenon in terms of the
organization of participation in the chats.

One important question we considered was whether or not the coding scheme that
had been used to identify these puzzling clusters initially could have been used to
identify these different organizations of participation. We decided that it would not
have been possible. The reasons for this decision are as follows. The existing coding
scheme treated each post as the primary unit of analysis. Codes applied to individual
chat postings but could not be used to characterize larger sequences of postings. This
made it impossible to analytically identify the organization of participation which is
understood as the relation among groupings of posted chat messages. While an
alternative approach to coding might have made such an analysis possible, the work
involved in developing such a coding scheme was formidable. Furthermore, it pointed
to the logical problem of consistency that coding schemes are often designed in ways
that lend themselves to find things for which there are codes. If we want to understand
how participants organize their participation, if we want to understand a sequence of
actions from participants’ perspectives, then coding schemes need to capture these
perspectives rather than the perspectives and interests of the researcher.

5 Hypothesis Testing and Discovery

As this work has shown, analytically understanding social interaction can be a tricky
business. The conduct of inquiry into social interaction has traditionally utilized
theories and analytical methodologies that allowed the analyst to test hypotheses
against a collection of coded data [14]. By proposing hypotheses and testing them
against coded data derived from “real world” phenomena, analysts are presumed to be
able to check the validity of their theories about social interaction. On occasion,
anomalies appear. Unexpected results are either dismissed as “outliers” or other
methods of analysis are deployed to provide some explanation.

Many of the problems associated with statistical analysis of social phenomena
derive from the coding schemes that are used. The procedures for producing codes
and for applying them to interactional data are sometimes problematic. One problem

282 A. Zemel, F. Xhafa, and G. Stahl

is that the sense-making procedures analysts use to produce and apply codes are not
independent of the sense-making procedures participants in the observed social
interaction use to make sense of their ongoing activity. While this can be seen as a
failure of coding schemes, it can also be viewed as a resource for doing initial
investigations of social interactional phenomena which are then supplemented by
close inspection of the sense-making procedures actors use. This is the perspective
and approach we have taken in the VMT project.

Using the existing coding scheme as applied to six chat logs, we explored the
hypothesis that we would expect to see a difference in the way that problem-solving
chats were organized if participants did or did not have the opportunity to inspect the
problem in advance of the chat. We hypothesized a difference could be detected and
used statistical techniques to describe ways that the chats were grouped together.
What we found was counter to the hypothesis. Rather than dismiss the results or
question the value of the coding scheme, we opted to treat the unexpected result as an
indicator of phenomena that required further investigation and closer analysis of the
way that participants organized their activities in these chats.

6 Conclusions and Further Work

In this research, we were able to exploit the mutually informing features of
quantitative and qualitative analysis. This has allowed us to discover a far more
nuanced explanation for the observed grouping of chats. However, in order to
determine whether our qualitative results provide an adequate explanation across
multiple cases, we need to re-specify a coding scheme that derives from the
perspective of the participants (for further discussion, see [14], [11]). According to
[11] practitioners of CA have often made informal distributional claims with respect
to observed interactional phenomena. However, certain questions about the
‘typicality’ or distribution of certain features of interactions of a particular type can
only be assessed quantitatively. In such cases, questions arise as to the appropriate
way to code data such that the requirements of valid statistical and quantitative
analysis can be met without violating the requirements of preserving the sequential
organization of, participants’ perspectives on and relevances with respect to emergent,
unfolding action sequences.

Based on this research, we have begun to explore a ‘top-down’ approach to coding,
based on the ways that interactants organize themselves and their interaction into
recognizable activities. This approach uses CA methods to identify closings and
openings of action sequences by which participants organize their activities into “long
sequences” [12] of identifiable action types. For example, we have begun to identify
sequences in which math problem solving activities are being conducted, as distinct
from various other kinds of non-math social interaction. In this way, we are
developing a coding scheme that preserves actors’ orientations, concerns, relevances
and the sequential organization, of the ongoing interaction.This proposed approach to
coding makes possible the comparison of different instances of social interaction in
ways that preserve the local organization of interaction and exploit that local
organization as a source of insight into the ways we come to treat action sequences as
sequences of particular sorts.

 Analyzing the Organization of Collaborative Math Problem-Solving 283

This paper points the way to achieving an understanding of computer-mediated
interaction among multiple participants. As this research has shown, questions
concerning the ways that groups are formed and sustained through online interaction
can be explored using multiple analytical methodologies as long as care and
consideration are given to the differences in the assumptions that inform these
methodologies. By using qualitative methods to explain an unexpected analytical
result, we have shown how it is possible to interpret the organization of group
participation in online interaction.

References

1. Stahl, G. (2002). Rediscovering CSCL. In T. Koschmann, R. Hall & N. Miyake (Eds.),
CSCL 2: Carrying forward the conversation (pp. 169-181). Hillsdale, NJ: Lawrence
Erlbaum Associates. Retrieved from http://www.cis.drexel.edu/faculty/gerry/cscl/papers/
ch01.pdf.

2. VMT Project: http://mathforum.org/wiki/VMT/
3. Mason, R. L., Gunst, R. F., Hess, J. L. (2003). Statistical Design and Analysis of

Experiments: With Applications to Engineering and Science, 2nd Edition. Wiley.
4. Dillenbourg, P., Baker, M., Blaye, A. & O'Malley, C. (1996) The evolution of research on

collaborative learning. In E. Spada & P. Reiman (Eds) Learning in Humans and Machine:
Towards an interdisciplinary learning science. 189-211. Oxford: Elsevier.

5. Avouris, K., Margaritis, F. A Tool to Support Interaction and Collaboration Analysis of
Learning Activity, CSCL 2002

6. Strijbos, J. W. (2004). The effect of roles on computer-supported collaborative learning.
Doctoral dissertation, Open University of the Netherlands, The Netherlands.

7. Daradoumis, Th., Martínez, A. and Xhafa, F.: An Integrated Approach for Analysing and
Assessing the Performance of Virtual Learning Groups. CRIWG 2004: 289-304, Springer

8. Ten Have, P. (1999). Doing Conversation Analysis: A Practical Guide. London: Sage
Publications.

9. Psathas, G. (1995). Conversation Analysis: The Study of Talk-in-Interzction. Thousand
Oaks: Sage Publications.

10. Pomerantz, A., Fehr, B. J. (1997). Conversation Analysis: An Approach to the Study of
Social Action as Sense Making Practices. In Teun A. Van Dijk (Ed.), Discourse as Social
Interaction, Discourse Studies: A Multidisciplinary Introduction Volume 2, (pp. 64-91).
London: Sage Publications.

11. Heritage, J., Roth A. (1995) Grammar and Institution: Questions and Questioning in the
Broadcast News Interview. Research on Language and Social Interaction, 28, 1, 1-60.

12. Sacks, H. (1992). Lectures on Conversation. Oxford: Blackwell.
13. Livingston, E. (1986). The ethnomethodological foundations of mathematics. London, UK:

Routledge & Kegan Paul.
14. Kaplan, A. (1964). The Conduct of Inquiry: Methodology for Behavioral Science. San

Fransisco: Chandler Publishing.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 284 – 291, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Collaboration for Learning Language Skills

Luis A. Guerrero1, Milko Madariaga1, Cesar Collazos2,
José A. Pino1, and Sergio Ochoa1

1 Department of Computer Science, Universidad de Chile
2 FIET, Universidad del Cauca, Colombia

{luguerre, mmadaria, ccollazo,
jpino, sochoa}@dcc.uchile.cl

Abstract. A Collaborative activity is designed and a software tool is developed
to support teaching grammar to primary education students. The activity is
intended to create interdependencies among students. The software tool helps to
implement the activity. Activity and tool were designed for teaching Spanish
grammar, but they can be adapted for teaching other languages.

1 Introduction

Group work has long been used as a pedagogical tool in a variety of learning
situations and, indeed, according to Slavin “many studies have shown that two or
more individuals can solve problems of different kinds better when they work in
groups than when they work independently” [16]. A specific type of group learning is
that supported by collaborative techniques: Computer Supported Collaborative Work
(CSCL). Collaborative learning technologies must go beyond generic groupware
applications, and even the basic technology is not yet well developed [17].

CSCL can of course be applied to teach language skills. Language knowledge is
considered one of the most important assets for a person’s life. Thus, language
acquisition courses constitute a substantial portion of the primary and secondary
curriculum in many countries. Our own University students still have deficiencies in
writing abilities; despite the fact the acceptance selection tests include this subject in
their evaluation. This situation is further aggravated by recent technology uses - such
as textual chat through cellular phones - which do not motivate youngsters to apply
good grammar for communication.

Our purpose was to develop a tool to support teaching grammar to primary school
students. It is assumed the tool will be used with Collaborative Learning techniques.
Specifically, it can be applied to 6th, 7th or 8th grade Spanish grammar students, but it
may be adapted to teach other languages grammar as well.

The paper is organized as follows. Section 2 presents related work. The design of
the collaborative activity used as a basis for the tool is presented in Section 3. Section
4 includes the main features of the tool. Section 5 presents some practice with the
system and finally, section 6 presents the conclusions and future work.

 Collaboration for Learning Language Skills 285

2 Related Work

Sánchez [14] has developed an Internet site for non-specialist students working on
Spanish grammar, designed to encourage their autonomy. The site is intended as a
complement to regular classes and to the conventional tools. By offering a choice of
learning paths, the designers seek to help students to acquire or to reinforce aspects of
the declarative knowledge they need to perform language tasks during regular classes.

E-Cid [19] is an online Spanish course replacing traditional lessons. This course is
based on contrastive grammar, and has been designed in modular form.

ELMA (Electronic Language Material Archive) [20] is a Web-searchable tool that
can be used to customize syllabi according to content-based learning practices. This
Web-based content will be accompanied by a battery of activities aimed at activating
a student's previous knowledge, facilitating the student's ability to organize
information and develop interpretive skills, and at generating class discussion.

Rodríguez et al. have designed collaborative learning games using palmtops for
students in the area of Spanish language, obtaining high levels of pupil motivation,
attention and concentration [11].

Klein has developed a Spanish class in a collaborative manner without computer
support. In his course, Klein improves speaking and writing skills via extensive and
intensive practice in both areas [22]. Ying-Hong et al. have developed an English
distance learning system (English multimedia corpus). It includes English articles,
dialogs and videos [18].

Hardy has developed a Web site to introduce the basic syntactic structure of
Modern English and the most common prescriptive rules in formal writing, containing
thousands of exercises; students may immediately know the correctness of their
answers [21].

The University of Sydney has built web sites, which may be visited to learn
English grammar, introducing some basic concepts in English grammar: parts of
speech, groups and phrases and subject and predicate [23].

There are many other computer-supported experiences to teach Spanish and
English grammar. These cases focus on student group work, not collaborative groups:
collaborative activities do not just happen when people are put together and required
to do a task in unison [6]. A supportive social milieu and a task infrastructure are
required. In this paper, we focus on collaboration as a group phenomenon in which
complex tasks are managed through close, step-by-step, apparently casual monitoring
by participants of each other’s actions, often cued through language.

3 The Collaborative Activity

The decision to use collaborative learning (CL) arose primarily from a desire to
innovate and to increase student participation. A cooperative group does not
automatically improve the construction of high order cognitive skills and complex
knowledge structures. In order to increase the possibilities for mutual understanding
and task-related social interaction, interaction tools are needed that are adequately
related both to the new concepts to be learned and to the previous experience and
knowledge of the students [9]. There should be flexible methods available for the

286 L.A. Guerrero et al.

students, to help them externalize their preliminary ideas and make their thinking
process transparent to others. From a constructivist perspective, CL can be viewed as
one of the pedagogical methods that can stimulate students to negotiate information
and to discuss complex problems from various perspectives. This can support learners
to elaborate, explain and evaluate information in order to re- and co-construct (new)
knowledge or to solve problems [3, 15]. That is our rationale to design a teaching-
learning activity based on collaborative learning techniques.

The designed activity was based on modifying the Language and Communication
curricula for 6-8th grades from our Ministry of Education [10]. The Ministry suggests
a series of individual activities for grammar contents.

The designed activity includes elements of CL [7]. In particular, the activity was
designed to generate interdependencies among group members, such as the need for
information interchange during task performing, work splitting into several roles, and
the need for explicit knowledge sharing [13]. These interdependencies are the key to
collaboration, and it is not easy to achieve them. We based our work on Collazos et
al., who have developed a mechanism to structure positive interdependence through
software tools intended to make students think in terms of “we” instead of “me” [1].
When positive interdependence is clearly structured and understood, group members
perceive that they – and their work- are linked for mutual benefit, that the efforts of
each group member will be unique, and that the unique efforts of all members will
contribute to success.

The activity has two roles: teacher and student. The teacher prepares the activity
and acts as a facilitator. The students work in small groups. They must perform the
tasks assigned by the teacher and solve any stated problems. The teacher must select a
set of students to do the activity. The number of students should not exceed six, since
several studies suggest small groups are best to generate maximum participation and
idea interchange [2]. As an example, the activity development will be explained
below for a group of four students.

The teacher must choose content for the activity. The content for the example will
be a morphological analysis: classify each word from a text to belong to just one
category, according to context within its sentence. At the beginning, the teacher must
select the work categories (for instance: nouns, adjectives, verbs, adverbs).

The teacher must then find suitable work texts. The number of texts must agree
with the number of students who will participate in the activity. The teacher has also
to find relevant reference material for the students and make it available to them.

Planning of the activity is done as follows. In our example we have four students
numbered S1-S4, and four texts labeled T1-T4. There are four work cycles; each of
them has individual work and then group work. Both work types are instances of
Problem Based Learning (PBL) [5]. In PBL, the teacher assigns tasks to students, and
they must do research and other actions to solve the problems by themselves.

The individual activity consists of studying one morphological element for one of
the texts during each cycle. The student must identify which words correspond to this
morphological element in the text (Fig. 1). This activity involves a kind of positive
interdependence: resource interdependence, allowing students to share materials,
information and other resources. This encourages additional conversation and
planning and gives elements to the teacher to monitor the activity.

 Collaboration for Learning Language Skills 287

Ti Ti+2(mod 4) Ti+3(mod 4)

 Adjective Noun Verb Adverb

Text

Element

Ti+1(mod 4)

Fig. 1. Assignments for Student Si

The student must do work in two aspects:

1. Learn about the theory concerning the grammatical element under study. The
student may or may not have previous knowledge. S/he may use the reference
material, ask his colleagues or consult other information sources.

2. Apply the theory to identify words being the grammatical element in the text,
according to their context.

The student tries to find all words belonging to his category in this individual work
phase. Three cases may occur: i) s/he rightly chose words belonging to the category;
ii) s/he made a wrong choice when selecting words which do not belong to the
category; and iii) s/he omitted to choose words belonging to the category. The teacher
uses the whole of these cases to determine the student’s strengths and weaknesses and
to evaluate his/her performance. Note this problem solving involves an understanding
of the grammatical elements; it is not an automatic task.

After the individual work, the students must do group work. It consists of co-
located correction and discussion of the previous activity. The students must have
access to the performance as a group they have obtained thus far. This group activity
is very important. When an individual member of the group expresses his/her opinion
in relation to the shared public understanding of the group, this will be an attempt to
synchronize his/her own understanding with the group-accepted version and make
clear the disagreements if there are any. Depending on the outcome of this process
there may be further interaction and negotiation until a new meaning or understanding
is fully accepted by the group. The key aspects of co-construction of knowledge,
meaning and understanding lie on this process interaction among individuals, as well
as on their shared and individual cognition.

The group activity ends when the group passes a threshold of performance, e.g.,
suppose students S1 and S2 chose a certain word as noun (correct) and adjective
(incorrect) at the same time. If individual performances were to be considered, there
will be a right classification (favourable points) and an incorrect one (no points
counted). On the other hand, the group numerical performance would be null, because
it is incorrect to classify the word both as noun and adjective for that sentence.

The students will have to justify their choices during this group activity, generating
discussion. According to Doise and Mugny, the benefits of collaborative learning are
explained by the fact that two individuals will disagree at some point, that they will
feel a social pressure to solve that conflict, and that the resolution of this conflict may
lead one or both of them to change their viewpoint [4]. The social pressure in this case
is done by group members wishing to improve the group performance.

288 L.A. Guerrero et al.

The teacher makes the evaluation to determine whether or not the group has passed
the performance threshold. In case the group does not approve, the students must
continue discussing changes to word classifications. If they pass, each student has
probably mastered his grammatical element and learned something on the other ones.

A new cycle is then started with each student in charge of a different element from
the one s/he worked in the previous cycle (Fig. 1). This strategy lets each student deal
with all concepts of the activity contents. The strategy is consistent with
recommendations from standard CL literature: Johnson et al., e.g., recommend
rotating roles while the activity be in development [8]. The number of cycles and the
number of different texts, then, must agree with the number of students. The teacher
can control the difficulty of the text for each cycle; s/he will probably increase it
depending on the previous rate of improvement and to keep students’ interest. It is
also expected the students will increasingly move from consulting reference material
to asking colleagues who have already mastered concepts.

4 The Computer Tool

There are three types of tool users: teachers, students and a system administrator. A
teacher can create and monitor activities, input texts, input grammatical categories,
input reference material and register students. A student can read the activity
description and is allowed to do individual and group tasks. The administrator
maintains activities and users for the system.

The base work unit is the activity. It has name, description, students assigned to it,
a specific grammatical category and a text. Automatic correction of students’
classifications is provided if the teacher has done the classification beforehand. Please
note this does not mean the activity to be done by the students is going to be
mechanical or without reasoning.

Fig. 2. Individual work UI

 Collaboration for Learning Language Skills 289

Monitoring is provided through statistical reports showing individual and group
performance in terms of number of rightly, incorrectly classified and omitted words.
The screen also identifies the problematic words. This information, after each cycle,
lets the teacher support students by providing hints or suggesting changes.

Each student gets a personalized screen, describing his/her activities. Fig. 2 shows
the screen for individual work, which may be asynchronous and distributed. Group
work, by contrast, requires face-to-face, synchronous work in just one computer.

Color cues are provided in the screens for easy visualization. Thus, the screen for
group work presents all words classified by a specific student with the same color. A
distinctive color is used for conflicting words, i.e., those ones chosen by two or more
students. The current group performance is also presented in graphic form. Finally,
the positive or negative difference with respect to the threshold is also shown.

Both individual and group work user interfaces have a quick access button to the
reference material. Therefore, they can easily review relevant theory.

5 Experimenting with the System

A preliminary experimentation was done with 32 seventh grade students (12-13 years
old) at a public school in our country, divided in eight groups of four students. We
would have liked to assess whether a collaborative activity such as the proposed one
actually makes students learn the subject. Furthermore, we should compare this
activity to traditional ones to determine the value of the collaborative approach.
However, our research is still on-going, and thus, a first pre-experiment was intended
just to have a first input about the usability of the tool.

The experiment consisted of two sessions with a questionnaire at the end of each of
them. Some improvements to the usability of the software were done between the first
and second session, according to the comments of the students. Some of the
improvements were: use of standards in colours and icons, a simplified way to enter
the application (avoiding the use of login and passwords), use of nicknames, more
graphical information (instead text-only interfaces), use of a more simplified language
(in the directions and messages), the possibility to change the student data (the
nickname, the colours), a simplified way to manage the software security (login and
passwords are very complicated concepts).

Table 1. Second questionnaire results

Question Likert
average

Disagree
(1 & 2)

Neutral
(3)

Agree
(4 & 5)

The activity improved my Spanish language
knowledge

3.8 13.3% 13.3% 73.3%

The group work improved my personal knowledge 3.6 20.0% 16.7% 63.3%

We finished the activity in a successful way 4.0 6.7% 16.7% 76.6%

I like the group work activity 3.8 6.7% 33.3% 60.0%

Four people were a good group size 3.5 13.3% 33.3% 53.3%

I contribute to my group knowledge 4.3 3.3% 16.7% 80.0%

I liked the activity 3.8 6.7% 30.0% 63.3%

I liked the software tool 4.1 6.7% 23.3% 70.0%

290 L.A. Guerrero et al.

Table 1 presents some of the results of the second anonymous questionnaire.
Answers to the questions were in a Likert 5-value scale (5-totally agree; 4-agree; 3-
neutral; 2-disagree; 1-totally disagree). Most interesting results were the following
ones: over 70% of the students think the activity improved their Spanish language
knowledge; 60% of the students also liked group work, and most of the rest were
neutral about group work. Only two students (6.6%) did not like the activity.

6 Conclusions and Future Work

Collaboration is not simply a treatment with positive effects on participants.
Collaboration is a social structure in which two or more people interact with each
other and, in some circumstances, some types of interaction occur having a positive
effect [12]. Activities should then be designed accordingly to get a shared
understanding of the problematic situation.

Our basic assumption is that CSCL tools must be associated to CL techniques to be
truly considered “collaborative”; otherwise it may be just “group” or “collective”
learning. The chosen technique in our case was PBL: the activity begins as a task the
students must achieve. It is while trying to do the assignment when students need
background theory and concepts. Of course, most of the required information is easily
available from the reference material, but it is while trying to assimilate it when that
information is transformed into useful knowledge. Note that some PBL characteristics
such as freedom to decide the methods or plan development, do not apply here.

The developed activity attempts to generate a CL environment, where individual
experimentation and group collaboration play a key role in the teaching/learning of
grammatical concepts. The software, on the other hand, is intended to simplify the
teacher’s task in terms of activity creation and monitoring: the tool automatically
corrects students’ assignments and it also provides statistical reports on students’
performance both currently and in its evolution in time. Despite the fact the developed
activity was designed to support teaching of Spanish grammar, we think it can be
easily adapted to the grammatical elements of other languages.

Finally, it is possible to consider the use of some alternative development and
implementation platforms, which could provide additional flexibility to the tool.
Specifically, we could include wireless mobile devices as PDAs (Personal Digital
Assistants). Naturally, the impact of this technology on the design of the application
must be evaluated. The evaluation must include both the technical feasibility and the
pedagogical and psychological aspects modelled in the collaborative tool. Our first
impression is that both individual and group tasks can be supported with these
devices. Individual tasks can be made in an asynchronous distributed way and thus, it
should be easy to support them. The synchronous face-to-face group activity could
also be supported in its discussion with PDAs.

Acknowledgements

This work was partially supported by Fondecyt (Chile) grants No. 1030959 and
1040952.

 Collaboration for Learning Language Skills 291

References

1. Collazos, C., Guerrero, L., Pino, J., Ochoa, S.: Collaborative Scenarios to Promote Positive
Interdependence among Group Members. LNCS 2806, 2003, 356-370

2. Cooper, J.: Small-group Instruction in Science, Mathematics, Engineering and Technology
(SMET) Disciplines: A Status Report and an Agenda for the Future. Cooperative Learning
and College Teaching Newsletter 6 (2), 1996

3. Dillenbourg, P., Baker, M., Blake, A., O’Malley, C.: The Evolution of Research on
Collaborative Learning. In Spada, H. and Reimann, P. (eds), Learning in Humans and
Machines, 1995

4. Doise, W., Mugny, G.: The Social Development of the Intellect. Oxford: Pergamon Press,
1984

5. Duch, B., Gron, S., Allen, D.: The Power of Problem-Based Learning, A Practical “How
To” for Teaching Undergraduate Courses in Any Discipline, Stylus Pub. LLC (2001)

6. Galleger, J., Kraut, R., Egido, C.: Intellectual Teamwork: Social Foundations of
Cooperative Work. Hillsdale: Lawrence Erlbaum, 1990

7. Johnson D., Johnson, R., Holubec, E.: Circles of learning (4th ed.). Edina, MN: Interaction
Book Company, 1993

8. Johnson D., Johnson R, Holubec, E.: Cooperation in the Classroom. Interaction Book
Company, Edina, MN, 1998

9. Katz, S., Lesgold, A.: Collaborative Problem-Solving and Reflection in Sherlock II.
Workshop on Collaborative Problem Solving, Edinburgh, 1993

10. Ministry of Education [our country]. Curriculum on Language and Communication for 6-
8th grades, 2003 (in Spanish)

11. Rodríguez P, Nussbaum M, Zurita G, Rosas R Lagos F.: Personal Digital Assistants in the
Classroom: An Experience. Ed-Media, Tampere, Finland, 2001

12. Roschelle, J., Teasley, S.: The Construction of Shared Knowledge in Collaborative
Problem-solving. In C.E. O’Malley (Ed), Computer Supported Collaborative Learning,
Berlin: Springer-Verlag, 1995, 69-197

13. Salomon, G.: What does the design of effective CSCL require and how do we study its
effects? SIGCUE Outlook, Special Issue on CSCL 21(3), 1992, 62-68

14. Sánchez, P.: Intégration d’un outil informatique dans l’enseignement du niveau
intermédiaire d’espagnol à l’Université de Technologie de Compiègne, Apprentissage des
Langues et Systèmes d’Information et de Communication, 5(2), 2002, 209-229

15. Scardamalia, M., Bereiter, C.: Computer Support for Knowledge-building Communities.
Journal of the Learning Sciences, 3(3), 1994, 265-283

16. Slavin, R.: Using Student Team Learning. Baltimore, MD: Center for Social Organization
of Schools, Johns Hopkins University, 1980

17. Stahl, G.: Groupware Goes to School. Lecture Notes in Computer Science 2440, 2002, 1-24
18. Ying-Hong, W., Chih-Hao, L.: A Multimedia Database Supports English Distance

Learning, Information Sciences, Informatics and Computer Science: An International
Journal, 158(1), 2004, 189-208

19. http://virtualcampus.ch/E-Cid
20. http://www.uctltc.org/funding/2000.01/elma.htm
21. http://textant.colostate.edu/grammarbook/title.html
22. http://www.uiowa.edu/~spanport/personal/Klein/w116/116-Hm.htm
23. http://www.arts.usyd.edu.au/departs/english/grammar/default.html

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 292 – 307, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Collaborative IS Decision-Making: Analyzing Decision
Process Characteristics and Technology Support

Bjørn Erik Munkvold, Kristin Eim, and Øyvind Husby

Department of Information Systems, Agder University College,
Servicebox 422, 4604 Kristiansand, Norway

Bjorn.E.Munkvold@hia.no, k_eim@hotmail.com,
ohusby@yahoo.com

Abstract. The paper presents an analysis of a collaborative decision-making
process related to the selection and implementation of a new corporate solution
for collaboration and information management in a Norwegian oil company.
Several challenges were identified in the decision-making process, related to
ensuring continuity between different phases, enabling efficient communication
among the different stakeholder groups, and gaining involvement and
commitment from the business areas. The analysis also focuses on the
utilization of various collaboration technologies in the different phases of the
decision-making process. The study contributes to increase our understanding
of collaborative IS decision-making processes, and the role of collaboration
technologies for supporting these.

1 Introduction

The role of information technology (IT) and information systems (IS) in supporting
decision-making is well acknowledged, enabling more effective decision-making in
the complex and information intensive operations of today’s organizations [13].
While Decision Support Systems (DSS) traditionally have been confined to
supporting individual decision-makers, the scope of these systems is now broadening
to also include different forms of collaborative support [12]. While much research has
been conducted on group decision-making using group support systems (GSS), there
is still limited empirical research on how a more extended collaborative IT
infrastructure may support organizational decision-making processes that may involve
both dispersed and asynchronous collaboration [6].

This paper presents an analysis of the collaborative decision-making process
related to the selection and implementation of a new corporate solution for
collaboration and information management in Statoil, a Norwegian oil company.
Spanning a two-year period, this decision process involved several phases with many
participants, using different collaboration technologies for communication and
information sharing. We identify several challenges experienced in the decision
process, and discuss the potential role of collaboration technologies in meeting these
challenges.

 Collaborative IS Decision-Making 293

The acquisition and/or development of IS applications in organizations represents a
particular type of decision-making process that has not been extensively focused in
research [2]. According to Boonstra [2, p. 207], “Many current decision-making
models and approaches in the MIS-field use assumptions that are mainly based on the
rational model of decision-making and ignore fundamental differences in IS
decisions, organizational features and external factors.” Our case analysis focuses
explicitly on the attributes characterizing the IS decision-making process studied.

The aim of this study is thus twofold: 1) to contribute to increase our understanding
on the potential role of collaboration technologies in supporting organizational
decision-making processes, and 2) to add to the scarce knowledge on IS decision-
making by providing an in-depth analysis of the collaborative decision-making
process related to the acquisition and implementation of a corporate IS solution.

The next section presents a brief overview of relevant research related to IS
decision-making and IT support for collaborative decision-making. Section 3 presents
the methodological approach, and Section 4 describes the case organization and the
decision-process analyzed. The results from the data analysis are presented in Section
5 and discussed in Section 6. Section 7 presents conclusions and implications.

2 Relevant Research

2.1 IS Decision-Making

An IS decision-making process is defined as “a set of actions that begins with the
identification of a stimulus (the IS-related problem) and ends with the IS decision”,
where an IS decision is defined as “a decision to invest (or not to invest) in new IS”
[2, p. 196]. While IS decision-making can be regarded as a case of organizational
decision-making, it has also been pointed to how high complexity, significant
resource demands, challenges related to evaluation, and lack of prior experience on
which to base the decision may represent distinguishing characteristics that make it
important to develop a better understanding of strategic IS decision-making processes
[2, 11]. Boonstra [2] combined a phase-based [9] and an attribute-based [11] approach
in analyzing 20 IS decision-making processes. This analysis showed how IS decisions
can be extremely diverse and have many perspectives, thus calling for a more
differentiated perspective on IS decision-making processes than the dominating
rational model. The following five factors were identified as resulting in major
differences in IS decision-making processes:

• Stimuli - the degree of urgency and necessity from the perspective of the decision-
makers (crisis, problem, opportunity)

• Design mode - whether there is scope to design a solution (ready-made, modified
or customized)

• Style - whether the IS decision can be subdivided in order to follow a more gradual
process path (planned vs. incremental)

• Search process - whether a search must be made to find distinct IS alternatives
• Participants - the number and influence of stakeholders involved in the process,

and the extent that their interests vary and contrast.

294 B.E. Munkvold, K. Eim, and Ø. Husby

In this study we apply these factors for characterizing the collaborative IS decision-
making process studied.

2.2 IT-Supported Collaborative Decision-Making

There is a rich body of research on the use of IT support for group decision making,
often termed group support systems (GSS) [5, 6]. While much of this research has
been conducted as experiments in academic setting, there is also a growing number of
studies on organizational decision-making supported by GSS [6]. This research shows
that the use of a GSS can have positive effects on both efficiency and decision
quality, while also providing enhanced participation and increased buy-in to group
decisions. However, most of these studies have focused on use of GSS in meeting
room settings, thus being limited to synchronous use of electronic meeting systems
(EMS) in relatively small groups. Few studies have yet reported on the use of a
broader range of collaboration technologies for supporting organizational decision-
making processes of a larger scope and time span. Brézillon et al. [4] report positive
effects on editorial decision-making in a newspaper from the implementation of a
collaborative IT system. However, the lengthy decision process related to the
implementation of this system was not reported as being supported by any
collaboration technology. A study by Borges et al. [3] addresses how lack of
accompanying information and a common context may result in a gap between
decision-makers and implementers, thus producing wrongly implemented or lost
decisions. They present a possible solution to this problem combining workflow
technology and discussion support tools. In our case study analysis we also document
how combining different collaboration technologies may be effective for meeting
potential challenges in collaborative decision-making processes.

3 Methodological Approach

The focus of this study was a complex decision-making process, involving multiple
stakeholder groups. We applied a qualitative research approach, using a single case
study design. The basis for this research project was an initiative from the case
organisation, suggesting a study of their collaborative decision-making processes and
related use of technology support. Thus, this could be described as an opportunity-
based design [8]. The unit of analysis was the decision-making process related to the
selection and implementation of the new corporate solution for collaboration and
information management in Statoil.

Data was collected through interviews and document analysis during Spring 2004.
Two of the authors interviewed 13 Statoil employees who all had been involved in the
decision-making process. These participants covered all major roles in the case
process, such as project sponsor, project manager, and members of the project group,
steering group, and reference group. The participants had from 5 to 25 years
experience in Statoil. The interviews were semi-structured, using an interview guide
that focused on the respondent’s background and role in the project, the structure
applied in the decision process, the communication and involvement in the different
phases of the project, the IT tools used throughout the project, and the respondent’s
overall view on the project. All interviews were taped and transcribed. In addition, we

 Collaborative IS Decision-Making 295

analyzed an extensive number of Statoil documents related to the different phases in
the decision process, as well as more general documents on the project methodology,
e-collaboration strategy, and Statoil business processes.

The data was analyzed through several iterations, involving interpretation,
categorization and discussion among the researchers. All interview statements were
validated by the respondents, and a final results report was approved by Statoil, thus
ensuring internal validity.

4 Case Overview

Statoil is the world's third largest exporter of crude oil, with approximately 24,000
employees in 29 countries and a total revenue exceeding US $ 45 billions (2004).
Statoil’s IT unit (about 630 employees) is a division of the corporate services business
area, responsible for adapting and delivering IT services to internal customers in the
company.

In December 2001, a project for implementation of a new corporate solution for
collaboration and information management in Statoil was initiated. The motivation for
the project was a fundamental need to establish a corporate-wide foundation for IT-
supported collaborative work practices, including coordination and document
management in all phases of the value chain. From 2002 to 2004, several actions were
conducted through different project phases which eventually led to a specific IT
solution for enhancing collaboration and information management in Statoil.

During this project, Statoil’s existing portfolio of collaboration technologies was
used extensively for supporting communication, coordination and information sharing
among the project participants. Lotus Notes constituted the core technology in this
existing solution, providing support for information management through the Sarepta
Arena system developed in Statoil. In addition, Statoil also has an established
infrastructure for audio, video, and desktop conferencing [1].

4.1 Case Decision Process

All activities related to development and implementation of new IT solutions in
Statoil are governed by their standard project methodology for IT projects – ProMIT.
According to the ProMIT model, a product development process involves several
phases, the transition of which is represented by a decision gate (DG), i.e. a milestone
or decision to be made before entering the next project phase. ProMIT specifies the
following phases: pre-study, concept specification, execution, and conclusion. Table 1
provides an overview of the case decision process according to these phases, based on
documentation from Statoil.

The project is divided into five separate decision phases spanning a two-year
period, followed by a two year implementation period. The project was initiated in
2001 with a decision on developing a strategy for effective e-collaboration in Statoil.
Phase 1 was completed in August 2002, and resulted in a strategy comprising several
goals for enabling efficient collaboration and information sharing. This strategy
formed the basis for the initialization of the feasibility study in the next phase. The
feasibility study included product demonstrations and architectural workshops in
cooperation with vendors, literature studies, and strategy workshops attended by

296 B.E. Munkvold, K. Eim, and Ø. Husby

participants from different business areas in Statoil. As the desired capabilities of a
new solution seemed to be insufficiently supported and understood by the vendors,
Statoil decided to extend the feasibility study.

Table 1. Overview of project phases

Period Project phases and decision points ProMIT phases &
decision gates

2001 Dec Decision on e-collaboration strategy ”DG0”
Jan-Aug Phase 1: Development of strategy Prestudy
Jul-Aug Decision on mandate for feasibility

study and concept development
DG1

2002

Aug-Dec Phase 2: Feasibility study Concept spec.
Jan-Feb Decision on mandate for further

feasibility study and concept dev.
Concept spec.

Feb-May Phase 3: Feasibility study, concept
dev.

Concept spec.

Jun-Aug Choice and approval of concept,
approval of implementation project

DG2

Jul-Sept Phase 4: Request for information from
relevant vendors (RFI)

Execution

Oct Choice of vendors to be asked to
propose a solution

Execution

Oct-Dec Phase 5: Preparation of requirement
specification, request for proposal
from selected vendors (RFP)

Execution

2003

Dec Choice of vendor DG3
2004-
2005

 Implementation and deployment Execution, DG4,
DG5, Conclusion

Phase 3 included technical and organizational feasibility studies, development of
alternative solution scenarios or concepts, and different analyses of consequences and
costs. Based on the different solution scenarios, a proposed solution concept and
architecture was presented. The request for information (RFI) process was conducted
in phase 4, which involved gathering information and evaluation of the solution
concepts from selected vendors. Based on this evaluation, a choice was made
regarding vendors to be asked to propose a solution. Phase 5 involved preparation of
requirement specification and a request for proposal (RFP) to these vendors. This
phase resulted in the choice of Microsoft as the key vendor for the new solution,
which is now being implemented.

The first three phases were primarily aimed at competence-building and
maturation, acquiring knowledge of new collaboration and information management
technologies. This justifies the durability of these phases, of one and a half year all
together. The extensive scope of the project also resulted in much time spent on
deciding whether to continue with the project, especially in the transition between
phases 3 and 4. The project would affect all employees in Statoil, and several rounds

 Collaborative IS Decision-Making 297

back and forth with the business areas were needed to discuss whether the employees
were mature for this level of change in their work practices. Phases 4 and 5 had a
more specific focus, thus lasting only three-four months each.

4.2 Case Project Organization

The project comprised several groups with participants from various parts of the
organization. The steering group was composed of process owners and IT leaders from
different business areas having a “customer” role, which involved evaluation and
decision making associated with the deliveries. The chairman of the steering group was
the project sponsor, who also represented corporate management. The project sponsor
was assisted by the steering group and was formally responsible for making the final
decision. The user responsible worked for the sponsor, and was responsible for ensuring
that the end-users got the information they needed about the project. The project
manager was the leader of the project group. The project manager role was assigned to
several persons during the project. The project group was composed of staff members
of the corporate services/IT department, working on the project on a daily basis.
Members of the project group varied somewhat during the project phases.

The reference groups were composed of representatives from relevant discipline
networks and various business areas representing end-users. The reference groups were
in this project referred to as quality assurance/control groups. The involvement of
representatives from different business areas was considered important in order to
maintain the viewpoint of the end-users. However, as will be described in the following
section, the involvement of these groups varied to a certain extent between the business
areas. Finally, working groups were put together with representatives from both the
reference groups and the project group, for working on specific task assignments.

5 Case Study Findings

This section presents major findings from the case study, categorized according to the
following themes emerging from our data analysis: project continuity, project
communication, commitment and user involvement, and collaboration technology
support. Interview quotes are used to illustrate and exemplify the findings, with
identification of group affiliation for each informant.

5.1 Project Continuity

The described project was relatively comprehensive with its separate phases or sub-
projects spanning a two year period. One challenge was to ensure continuity
throughout the project, i.e. maintaining knowledge and other resources during all
project phases:

”A lot of time has been spent on learning, and it is important to ensure that the
learning is passed on to the next phases, from either the same persons or in such a
way that the competence and knowledge are reused. That is a challenge when the
duration has been that long.” (Steering group)

298 B.E. Munkvold, K. Eim, and Ø. Husby

Some of the respondents argued that the project suffered from a continuous
mobilizing and demobilizing of project participants:

“(…) we [the project group] were demobilized from the project in December 2002,
and didn’t know when the project was starting up again in 2003. Then, when people
were assigned to other tasks, a new decision was made on continuing with the project
which required a new mobilization.” (Project group)

The loss of continuity was also referred to as a result of people switching roles during
the project phases. This discontinuity in the process was especially evident in the
transition from phase 3 (the feasibility study) to phase 4 (the RFI process). Some of
the respondents described the waiting time between these phases as quite frustrating,
due to insufficient overview of the project and the constant need for keeping
themselves posted with the information in Sarepta Arena folders to update their
knowledge about the project. However, some of the respondents claimed that the
continuity between the phases was satisfactory and could not have been done
otherwise.

The results indicate that the perception of continuity among the respondents varies
according to their role and group affiliation within the project. The frequency of
meetings varied among the different groups in the project. Whereas the project group
working with project-related tasks on a daily basis had weekly meetings, the other
groups had meetings in a less frequent manner (monthly or every third week). In
general, respondents working on the project on a daily basis described the transition
between phases as rather frustrating, while respondents involved in groups working
on the project in a more infrequent manner did not regard the loss of continuity as
problematic. However, all respondents agreed that the project continuity from project
start until phase 3 was satisfactory.

The demobilization of project members was also reported to affect their access to
project-related information. Whereas project members who were actively engaged in
the project throughout the project lifecycle had relatively good access to information
about the project, members of other groups such as the reference groups and
participants who gradually were removed from the project expressed a certain lack of
available information:

“I’m organized in the same unit as many of the project members. In addition I was
involved in the first three phases in the project, but not anymore (…) However, I don’t
know much about the project now, I don’t get much official information. And I am a
Nosy Parker, so if there was anything, I would have known…” (Project group)

“The accessibility of information was very good in the period I was involved in the
project. But when that period was over, we didn’t hear much.” (Reference group)

Most of the respondents agreed that the accessibility of information was sufficient in
periods when they were directly involved in the project. This was obtained through
reports containing needed information prior to and after each meeting:

“I’ve read information about the project through Sarepta Arena. And that has been
very good. They have been very good at documenting the processes. (…) They have
followed up quickly with information prior to and after the meetings. Actually, that
has been exemplary.” (Reference group)

 Collaborative IS Decision-Making 299

The perceived lack of information was mostly evident during phases 4 and 5. Two
possible reasons for this were identified. First, these phases were confidential and
hence all project-related documentation was kept in closed folders. Second, by the
start of phase 4, many project members were either appointed to new projects or
assigned to new roles in the project. Generally, fewer participants were involved in
this phase, as the project sponsor and his advisors to a certain extent dominated these
processes. As a consequence, several of the former project members were now on the
outside and no longer automatically updated with the progress of the project. The
technologies used for information sharing among the participants are described in
Section 5.4.

5.2 Project Communication

The case process involved several forms of communication between the various
groups in the project (ref. Section 4.2). Among the project members it was a common
agreement that the internal communication worked well. These worked tightly
together and were at times co-located in a dedicated office environment. However,
during hectic periods with several parallel activities there was less time for internal
communication, and collaboration with surrounding environments became a low
priority task. The participants in the reference groups attended more or less formal
hearing meetings chaired by the project group. Some of these hearings were
characterized as very successful regarding communication, attributed to being well
prepared in advance and facilitated by the group leader.

Terminology was mentioned by several informants from the different stakeholder
groups as one factor preventing effective communication. The project group spent a
lot of time exploring and learning about the subject area, developing a certain jargon.
This resulted in a barrier to effective communication between the project group and
the other groups in the project, i.e. the steering group and the reference groups:

“I think that what has been the main weakness is communication, a dialogue, which is
the lack of a common conception, a common perception of what we are talking about.
And that the framework is mutual.” (Project group)

Although involvement of users and business representatives was described as strong,
communication was seen as a main challenge by the project group. This involved
translating the rather complex project terminology into a message that could make the
business areas understand “what’s in it for me”. The project group here stressed the
importance of spending adequate resources on gaining necessary involvement from
the user representatives. Yet, some respondents were still critical regarding the project
group’s use of terminology:

 “That is - to put it mildly - totally incomprehensible! That is a common problem -
whether you work within IT or other parts of the enterprise, everybody has their own
language. Once talking to others that do not share this language, there is a cultural
conflict.” (Steering group)

A reference group member also pointed to how “IT language” tends to be a general
concern among all employees in the company, contrary to other disciplinary jargons
that are only used within the related professional groups.

300 B.E. Munkvold, K. Eim, and Ø. Husby

Another communication challenge was referred to as a gap in ambition level
between the project group and the steering group regarding the expected deliveries.
This was particularly related to the feasibility studies in phases 2 and 3, where the
deliveries from the project group exceeded the expectations of the steering group
regarding level of detail. While the result was perceived to be of good quality, this
was also seen as evidence of how the communication between these groups could
have been better. Some members of the steering group also regarded the level of
detail in the documentation to be too high, arguing that it could have been possible to
reach the same decision without this extensive decision basis, and within shorter time.
Other members of the same group considered the extensive and thorough process
necessary for obtaining a consensus decision. This illustrates how there tended to be
differing perspectives both within and between the different groups on these
challenges.

5.3 Commitment and User Involvement

The use of reference groups served to obtain input and requirements from the business
areas and users, and to anchor the decisions to be taken by developing maturity in the
business areas through learning together with the project group. The overall
perception seemed to be that the business areas were well involved:

“What has been particularly good is that they [the project group] have involved a
large share of the corporation, the business areas and staff functions. A
representative sample.” (Reference group)

“And, that we feel more ownership causes that we have a better attitude, and
understand the benefit. It is even so that we see that we are able to take a broader
view and realize what consequences it has to Statoil, and not solely think of
ourselves.” (Reference group)

The early participation by the business in the initial phase of developing the e-
collaboration strategy, and the feasibility study and lab demonstrations, were stated as
factors contributing to commitment from the business representatives.

However, several respondents pointed to how the involvement from different
business areas had varied to some extent:

“We had so-called reference groups from the business that were to contribute. I
noticed that there was poor participation from some business areas. However, that
improved. But the participation from the business was too variable, I guess. That is a
classical problem - those that ought to take part often do not have the time because
they are key personnel. The steering group stressed the importance of participation,
and then it improved. We did not have optimal participation from day one, but it
improved gradually.” (Steering group)

As stated by several respondents, varying commitment will often be an issue when
participation is voluntary and time is limited. Some also addressed the challenge of
selecting the right representatives from the business areas, arguing that some business
areas missed their chance of influencing the process by sending delegates to
workshops “that did not know why they were there”. It was also pointed to how it was
important to involve different groups of users, but that involving too many could lead
to “endless discussions”.

 Collaborative IS Decision-Making 301

Overall, the interviews indicated that the project group, the steering group and the
business representatives all thought that the level of involvement and commitment was
somewhat satisfactory, but that all parties also suggested that it could have been better.

5.4 Collaboration Technology Support

Statoil has a well established infrastructure of collaboration technologies [10]. Table 2
provides an overview of the different collaboration technologies used in the various
phases of the project, and the experiences with these.

The technologies include both asynchronous and synchronous tools, supporting
information sharing, distributed meetings, electronic brainstorming and evaluation.
Typically, the technologies have been used on a demand basis, utilizing the
technologies considered most suitable for the different tasks. This can be seen to
reflect the rather internalized use of the different technologies among the employees,
at least in the project group.

Table 2. Technologies, usage, and experiences

Technologies
(Product)

Areas of use User
groups*

Experiences Phases

E-mail
(Lotus Notes)

Coordination P, S, R Effective for coordination
and communication
outside meetings.

All
phases

Shared document
folders
(Sarepta Arena,
 Lotus Notes)

Information
sharing and
document
management

P, S, R Important for common
access to project
documentation.

All
phases

Net meetings
(MS NetMeeting/
Lotus Sametime
with telephone
conf.)

Distributed
meetings

P, S, R

Effective for meetings
with participants at
different Statoil offices.

2
(mainly)

Videoconferencing
(Tandberg)

Distributed
meetings

P, S

Used mostly for meetings
with externals.

2 and 3
(mainly)

Electronic meeting
support
(GroupSystems)

Workshop

P, R

Effective for brain-
storming and gaining user
input.

3

Surveying
(Confirmit)

Evaluation R Useful for priority-setting
of solution requirements.

3

*P = Project group, S = Steering group, R = Reference groups

A lot of documentation was produced in the process and stored in Sarepta Arena, the
Lotus Notes based general solution for document management in Statoil. This involved
different types of documents, i.e. working documents, temporary reports, final project
reports and executive summaries. Access to a common document repository was
reported to ease collaboration within the project, and several respondents complimented

302 B.E. Munkvold, K. Eim, and Ø. Husby

the project group for providing timely and well structured information in this repository.
Yet, the project group saw a need for presenting their reports to the steering group in
meetings, as the reports were considered to warrant more explanation rather than being
evaluated “on their own”.

Net meetings and videoconferencing were mainly used in the concept specification
phase. Clear meeting agendas and material made available in advance, combined with
skilled meeting facilitation, were emphasized as important factors for effective
accomplishment of such meetings. Sarepta Arena was here used for feedback and
questions on shared documents prior to meetings. One respondent here pointed to how
net meetings seemed to be preferred over videoconferencing, at least in connections
when the participants knew each other, as arranging a net meeting on the desktop was
considered easier than “running to a videoconferencing room”. Videoconferencing
thus tended to be used more with external parties.

During creation of different solution scenarios in the concept specification phase
there was a need for richness of ideas developed through brainstorming. A session
with this purpose was organized as an all-day workshop using GroupSystems for
electronic meeting support, with a skilled GroupSystems facilitator from outside the
project. This workshop was perceived as a good utilization of such a service that
lowered the threshold for communication and contributed to effective dialogue and
lots of ideas in a short period of time:

“Killer app! It’s an excellent method when you are going to generate many ideas
within a short time-frame because it ensures that everyone gets to speak one’s mind,
without everybody talking at the same time. However, that demands having a good
facilitator - which we had.” (Reference group)

The abilities to systematize, organize and prioritize were also appreciated. Anonymity
and equal possibilities for participation were mentioned as factors that eased
participation of parties that would otherwise not have been so eager to contribute.

In addition, a surveying tool was used for evaluation purposes. This was stated to
be particularly suitable during priority-setting of solution requirements in the concept
specification phase, with feedback gained from a larger number of employees
providing a good starting point for further analysis.

6 Discussion

6.1 Characterizing the IS Decision-Making Process

Similar to most of the IS decision-making processes studied in [2], this process had a
relatively long time-span of two years (not including implementation). The process
can be characterized as rational, i.e. a decision “based on objectives, perceived or not,
and undisputed facts, […] taken only after a thorough analysis as a well-orchestrated
and coordinated series of actions” [2, p. 199]. The project was run “by the book”, i.e.
following the detailed specifications of the ProMIT methodology. Table 3
characterizes the decision-making process according to the distinguishing factors
presented in Section 2.1, based on [2]. This characterization provides the background
for the further discussion on the role of collaboration technologies in the decision
process, and the experienced challenges in the process.

 Collaborative IS Decision-Making 303

Table 3. Characteristics of the IS Decision-Making Process

Attributes Decision Process Characteristics
Stimuli Problem

Decision
(Opportunity)

The decision process was initiated based on the
need for a more effective solution for collaboration
and information management. Also some element
of opportunity decision, as the new solution is
intended to enable new and innovative
collaborative work practices.

Design
mode

Modified No ready-made solution existed covering Statoil’s
needs – thus the solution combines given and
customized features, which can be modified to
make them fit specific business conditions.

Style Incremental The decision process comprised a series of
decisions, also involving decisions on continuing
the project.

Search
process

Extensive The concept specification phase involved an
extensive search process of solution alternatives.

Participants Many
involved

The process involved several stakeholders,
represented by the project, steering and reference
groups, with different needs and concerns.

6.2 The Role of Collaboration Technologies in the Decision Process

We have previously reported how several collaboration technologies were used to
support the decision-making process in this case. In this section we discuss the extent
to which the full potential of these technologies has been exploited, and the
implications from our findings regarding how collaboration technology may be used
for alleviating the experienced challenges related to collaborative IS decision-making.
In sum, the main challenges were identified as: 1) ensuring continuity in the project;
2) ensuring effective communication among the different stakeholder groups; and 3)
gaining involvement and commitment from the business areas.

Project Discontinuity. The incremental nature of this decision process created
problems with continuity, due to project members being demobilized and assigned to
new projects between the different phases. The Lotus Notes based information
repository, Sarepta Arena, provided common access to project documentation
throughout the project, and thus served as an important means for maintaining
continuity through documentation. Thus, the problems with discontinuity were more
related to non-optimal use of competence resources, than to decisions being “lost” in
transition between phases [3]. It should also be noted here that some respondents
actually pointed to a need for some membership fluctuation throughout the process,
for bringing different qualities into the project.

Yet, with the final phases of the project being closed, this implied restricted access
to the contents in the repository. Thus, project members from the earlier phases who
were no longer part of the project group now experienced difficulties with keeping up
to date with the project. This seems to imply a need for a more differentiated access

304 B.E. Munkvold, K. Eim, and Ø. Husby

policy to the information repository, allowing more peripheral members to still gain
access to high-level status information on the project. Also, use of electronic
discussion lists could perhaps have been useful as a forum for stakeholders to
maintain informal communication and discussion about the project [3].

Project Communication. Statoil has a well developed infrastructure for electronic
communication, including desktop conferencing (net meetings), and audio and video
conferencing. This was reported to be effective in supporting communication among
project members in different locations, thus also providing more flexible access to key
personnel. The challenges related to communication identified in this decision process
were thus related to contents, and not infrastructure.

The subject of this IS decision-making process was complex and comprehensive,
implying an emphasis on learning by the project group and the need for an extensive
search for solution alternatives. With few comprehensive IS solutions like this having
yet been implemented in industry, there was also limited possibility for learning from
other companies. The communication problems reported were mainly related to
perceived gaps in technical jargon and ambition level among the different stakeholder
groups. This illustrates the importance of developing cross understanding, i.e. the
understanding that individual group members have about the mental models of other
individual group members [7]. The combination of a high level of knowledge
diversity and a high level of initial or achieved cross understanding is considered
optimal for enabling decision groups to produce high quality decisions [7]. Conscious
selection of group members with knowledge diversity, and frequent dialogue and
exchange of perspectives are presented as strategies for achieving this.

Commitment and Involvement. As evidenced in the case analysis, the project group
was complimented for having facilitated involvement from a large share of the
organization. This took the form of workshop sessions where the different business
areas were invited to send their representatives. The use of skilled facilitators for
these workshops was emphasized as a positive factor for the outcome of these. Yet,
the time pressure in some of the decision stages also was reported to result in hearing
meetings where the agendas proved too ambitious, leaving time mostly for
presentation from the project group rather than real discussion and input from the
business representatives.

One full-day workshop was also conducted with GroupSystems, supporting brain
storming and idea organization. This was characterized as very effective, exposing many
of the benefits commonly attributed to this type of technology, such as more effective
communication through parallel input of ideas, and increased participation through
anonymity [5, 6]. The use of a trained facilitator was highlighted as an important
requirement for successful use of this technology, in line with previous findings [1, 5, 6].

The findings also show how involving the right people was a challenge, since the
appointment of these was handled by the different business areas. Deciding on the
level of involvement was also characterized as a balancing act, where “too much
democracy” could risk falling into “endless discussions”:

“Presumably we could talk with all 17000 employees, and they would all have
different opinions, and still not be satisfied with the level of involvement. Thus, one
has to find the proper balance.” (Steering group)

 Collaborative IS Decision-Making 305

The survey tool was reported to be effective for gaining feedback from a larger
number of people. Use of Sarepta Arena for feedback on documents prior to meetings
represented another possibility for involving a broader base of people, regardless of
time and place. In addition, online discussion forums could possibly have been used
for enabling involvement from interested people in the business areas. Providing more
frequent and easily available information updates to people outside the core project
group was also identified as a potential way of maintaining a more continuing
commitment to the project.

Some Final Comments on Technology Selection and Use. Several of the challenges
reported in this study can be ascribed to time pressure, as the deadlines in the various
phases of the project were tight. This clearly restricted the possibilities for providing
extensive information services to “outsiders”, and for moderating and maintaining
electronic discussions. In that respect, our recommendations may be somewhat
discarded as wisdom of hindsight. Yet, we argue that the findings also contain
implications for how collaboration technology support may contribute to decision
process improvements, even within the reality of hectic project schedules. For
example, increasing use of multi-mode meetings, i.e. meetings comprising interaction
in different time/place combinations may enable a broader base of employees to
contribute at their time and convenience, thus providing more flexibility to the
decision process [1]. Examples of this form of multi-mode interaction identified in the
case decision-making process include discussion of documents in Sarepta Arena prior
to meetings, and the use of the survey tool for gaining feedback from a larger number
of people as a starting point for further analysis.

Finally, the positive experiences from the GroupSystems session indicate how this
constitute an effective tool for quickly collecting and structuring input from a larger
number of people than would be possible in traditional meetings without technology
support. One may thus question why this tool was not utilized more throughout this
decision-making process. However, the answer to this goes beyond the assessment of
functionality alone, as a decision to discontinue the use of electronic meeting support
in Statoil was made independently of the new e-collaboration solution concept.

7 Conclusions and Implications

The article has presented an analysis of the collaborative decision-making process
related to the specification, selection and acquisition of a new IT solution for
collaboration and information management in Statoil. Overall, the process was
characterized as successful, reaching a consensus decision among the stakeholders
involved. Yet, despite being conducted according to a detailed process methodology,
and supported by an extensive portfolio of collaboration technologies, the project
experienced several challenges related to project continuity, communication between
the stakeholder groups, and commitment and involvement. This illustrates the
complexity in this type of IS decision process, characterized by many stakeholders,
extensive search, and modified design. Overall, our findings support earlier calls for a
more differentiated view on IS decision-making processes, with explicit attention to
the specific attributes characterizing each process.

The study also contributes insight into the potential role of collaboration
technologies for supporting IS decision-making processes. The use of a common

306 B.E. Munkvold, K. Eim, and Ø. Husby

information repository and a well established communications infrastructure were
important factors for successful completion of the project. A more differentiated and
role-based access to the information repositories, and more extensive use of online
discussion forums were identified as potential means for increasing involvement in
the process, and closing communication gaps between stakeholder groups through
increasing cross understanding. Further, combination of different technologies for
supporting multi-mode interaction stands out as a potential way of enabling more
effective interaction in time pressed activities. Finally, the positive effects from the
use of electronic meeting support indicate that this technology could favorably have
been utilized more in this project.

Further research should investigate more the potential role of different forms of
collaboration technology support for organizational decision-making processes. By
analyzing relationships between attributes of these processes and technology use, this
may further increase our understanding of suitable combinations of technology
support for different phases and activities in collaborative decision-making processes.

Acknowledgments

We are grateful to the Statoil interviewees for sharing their experiences with us, and
to Bjørn Tvedte for facilitating the data collection for this study and for providing
useful comments.

References

1. Anson, R., Munkvold, B.E.: Beyond face-to-face: a field study of electronic meetings in
different time and place modes. Journal of Organizational Computing and Electronic
Commerce 14(2) (2004) 127-152

2. Boonstra, A.: Structure and analysis of IS decision-making processes. European Journal of
Information Systems 12 (2003) 195-209

3. Borges, M.R.S., Pino, J.A., Araujo, R.M.: Bridging the Gap Between Decisions and Their
Implementations. In: de Vreede, G.-J. et al. (eds.): CRIWG 2004. Lecture Notes in
Computer Science, Vol. 3198. Springer-Verlag, Berlin Heidelberg (2004) 153-165

4. Brézillon, P., Adam, F., Pomerol, J.-C.: Supporting Complex Decision Making Processes
with Collaborative Applications – A Case Study. In: Favela, J., Decouchant, D. (eds.):
CRIWG 2003, Lecture Notes in Computer Science, Vol. 2806. Springer-Verlag, Berlin
Heidelberg (2003) 261-276.

5. Fjermestad, J., Hiltz, S.R.: An Assessment of Group Support Systems Experimental
Research: Methodology and Results. Journal of Management Information Systems 15(3)
(1998-1999) 7-150

6. Fjermestad, J., Hiltz, S.R: Group Support Systems: A Descriptive Evaluation of Case and
Field Studies. Journal of Management Information Systems 17(3) (2000-2001) 115-160

7. Huber, G.P., Lewis, K.: Cross Understandig in Decision Groups: Analysis and Support. In:
Meredith, R. et al. (eds.): DSS2004 Conference Proceedings, Prato, Italy (2004) 381-391

8. Miles, M.B., Huberman, A.M.: Qualitative Data Analysis. An Expanded Sourcebook. 2nd
edn. Sage, Beverly Hills, California (1994)

9. Mintzberg, H., Raisinghani, D., Theoret, A.: The structure of unstructured decision
processes. Administrative Science Quarterly 21(2) (1976) 246-275

 Collaborative IS Decision-Making 307

10. Munkvold. B.E., Tvedte, B.: Implementing a Portfolio of Collaboration Technologies in
Statoil. In Munkvold, B.: Implementing Collaboration Technologies in Industry: Case
Examples and Lessons Learned. Springer-Verlag, London (2003) 81-107.

11. Sabherwal, R., King, W.: An empirical taxonomy of decision-making processes
concerning strategic applications of information systems. Journal of Management
Information Systems 11(4) (1995) 177-214

12. Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past,
present, and future of decision support technology. Decision Support Systems 33 (2002)
111-126

13. Todd, P, Benbasat, I.: The Impact of Information Technology on Decision-Making: A
Cognitive Perspective. In: Zmud, R.W. (eds.): Framing the Domains of IT Management.
Pinnaflex, Cincinatti, Ohio (2000) 1-14

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 308 – 324, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Software Requirements Negotiation Using the Software
Quality Function Deployment

João Ramires1,4, Pedro Antunes1,3, and Ana Respício2,3

1 LaSIGE – Large Scale Information Systems Laboratory
2 Centro de Investigação Operacional

3 Department of Informatics of the Faculty of Sciences of the University of Lisboa,
Bloco C6, Campo Grande, 1700 Lisboa, Portugal

{paa,respicio}@di.fc.ul.pt
4 Centro Nacional de Pensões, Av. República 102, 3º Lisboa, Portugal

joao.j.ramires@seg-social.pt

Abstract. We propose a groupware tool supporting the Software Quality Func-
tion Deployment approach to software requirements validation. The design
challenge is to involve several stakeholders, having conflicting views and atti-
tudes which may be difficult to reconcile, in the requirements validation. The
adopted approach integrates collaboration and negotiation support. Negotiation
models inspired the development of a set of mechanisms promoting integrative
attitudes and avoiding distributive ones. Experiments with the tool revealed
some usability problems, but also showed that it is convenient to use and bene-
ficial promoting consensus.

1 Introduction

Best engineering practices recommend that product quality should be addressed be-
fore and constantly evaluated during the product development. Furthermore, this
vague notion of “product quality” should refer to concrete system attributes, address-
ing both the stakeholders’ needs and technical activities necessary to deploy the prod-
uct. This perspective is central in the Total Quality Management (TQM) trend
adopted by many organizations pursuing excellence in software development [2].

Quality Function Deployment (QFD) [3] is often used to implement TQM. QFD
aims to define relationships and ultimately match the users’ and technical require-
ments [4]. QFD is used by manufacturing firms and has been lately applied to soft-
ware production [2, 5]. In this later context, the fundamental value provided by QFD
is focussing the software development process on the users’ perspective: the Voice of
the Customer (VoC [6]). Although the traditional software development processes
recognize the importance of the users, they do not offer simple mechanisms to verify
the compliance with users’ requirements through all development stages (lifecycle
tracking [4]). The Software QFD (SQFD [5]) fills this gap in software engineering.
The SQFD approach is considered part of the Capability Maturity Model (CMM)
level 4 implementation [6].

Software Requirements Negotiation Using the Software Quality Function Deployment 309

In a very simplified view, SQFD is a matrix of correlation values between re-
quirements and specifications. This matrix is used in the following way [5]: (1) users’
requirements are solicited to relevant stakeholders and placed in the left-hand side; (2)
with the help from the stakeholders, the requirements are converted to technical speci-
fications and placed at the upper side; (3) the stakeholders are then invited to com-
plete the matrix with their perceived correlations; (4) a list of requirements priorities
is defined; and (5) a list of technical specifications priorities is defined.

The correlations may be expressed in several ways, although a four-point scale
(“none,” “weak,” “medium” and “strong,” or 0, 1, 3 and 9 numeric values) is most
often used [5]. The selection of a correlation is a qualitative task, where the objective
is to identify the most appropriate link between “what” will be implemented and
“how” the implementation corresponds to the stakeholders’ expectations. Since there
are many stakeholders involved, it is natural that different values may be proposed,
according to different perspectives about the system, interpretations of what is in-
volved in system development, hidden agendas, etc.

Three alternatives for obtaining SQFD correlations have been documented in the
literature: (1) requesting individual responses and averaging the results, possibly us-
ing a moderation factor such as the relative importance attributed to each stakeholder
[4]; (2) using multi-criteria preference analysis to combine individual preferences into
some utility function [7, 8]; and (3) in a meeting, where the stakeholders must negoti-
ate their different opinions until a consensus is achieved [9].

Although there are differences between the first two approaches, their focus is on
the individuals, while the later approach stresses the commitment of the whole group
to the SQFD process. This later approach is considered beneficial for team building,
increasing the involvement in product development, obtaining overall consensus
about “what to do,” and preserving momentum when the group changes [9].

One problem with the later approach is that, being based on meetings and a definite
need to negotiate, the evaluation process may become time-consuming. According to
[10], two consequences of increased participation in meetings are a decrease in
response time and a decrease of total time available for decision making in
organizations. This problem naturally increases with the size of the SQFD matrix.

We aim to develop a groupware tool supporting parallel work and facilitating
consensus on the SQFD matrix, thus reducing the required amount of time to
accomplish the task. The proposed groupware tool, which is named MEG, integrates
SQFD support with collaboration, negotiation and argumentation support. MEG is at
the same time a Group Support System (GSS) and a Negotiation Support System
(NSS), thus falling in a category of tools commonly designated Group Decision and
Negotiation Support System (GDNSS [11]).

More generally, we aim to research the integration of GSS and NSS functionality,
addressing their differences in the conflict dimension. Regarding the low-conflict
facet of the GSS perspective, we propose an approach to promote integrative attitudes
and avoid distributive ones. Recognizing the high-conflict facet of the NSS perspec-
tive, the proposed approach also supports parallel negotiation processes, argumenta-
tion, bargaining and firm attitudes from the users.

The paper is structured in the following way. We start describing the requirements
for integrating SQFD with collaboration and negotiation models in a coherent group-
ware tool. We then provide a detailed description of MEG. Finally, we describe two
experiments with the tool, discuss the related work and present the obtained results.

310 J. Ramires, P. Antunes, and A. Respício

2 SQFD and Negotiation – Requirements Definition

The SQFD matrix has cells correlating users’ requirements with technical specifica-
tions. A correlation value measures the preference for the technical specification to
fulfil the satisfaction of the requirement corresponding to a cell. We adopt the four-
point scale with values 0, 1, 3 and 9. For reading convenience, correlation values will
be referred as C. For example, in Figure 4, the requirement “Reply to mails easily”
relates with the specification “Integrate external editor” with C=9, suggesting that this
specification is strongly satisfying.

Assuming that several stakeholders work in parallel and select different C leads to
a conflict situation addressed by our initial requirements:

R 1. MEG will support the specification of different preferences for C, so that stake-
holders may express their different views while working in parallel.

R 2. When alternative C have been proposed, MEG will support the negotiation of C
until a final value is accepted by all stakeholders.

Any negotiation requires information exchange. The SQFD model does not explic-
itly represent such information, but only the proposed C. One clear advantage of
adopting groupware to implement SQFD is the possibility of extending the SQFD
matrix with a shared memory component preserving the positions and arguments
produced by the stakeholders. We adopted IBIS for that purpose. In Figure 1 we illus-
trate how SQFD and IBIS are combined to organize information pertaining to the
negotiation of one SQFD cell [12]. The conflicting C generate an issue, for which
there is an initial bid and a subsequent negotiation to reach an agreement. In that
process, the stakeholders may add arguments to their preferences. This approach is
articulated by the following requirement:

R 3. MEG will handle multiple preferences for C as an issue, identifying an initial
bid and positions against or in favour, and will allow the stakeholders to express
their positions and arguments in favour of different C values.

One further aspect related with SQFD and negotiation concerns the degree of in-
formation sharing supported by groupware. Very often, groupware assumes that the
group has a shared goal and conflicts may be resolved with the support to shared
representations of problems, issues and alternatives [13]. On the contrary, negotiation
assumes conflict between the parts involved, turning more difficult the creation of
shared representations while increasing the process weight. The challenge then is that

Requirement

Specification

SQFD Model

Argumentation Model

C

Position

Argument

Issue

Fig. 1. Integration of SQFD and argumentation models for one SQFD cell

Software Requirements Negotiation Using the Software Quality Function Deployment 311

the integration of both perspectives creates some tensions between the support to
the individual and group goals, and the support to shared representations and negotia-
tion processes. These observations lead us to define a clear frontier between the stake-
holders’ hidden and shared knowledge [14]:

R 4. MEG will not disclose the individual preferences of C, only their positions and
arguments.

We will now address the negotiation of C for one SQFD cell, considering that all
cells are handled in the same way. Negotiation behaviour can be analysed according
to two different strategies paradigmatic in negotiation research [15]:

− integrative, where an agreement is found in an inventive and collaborative way,
exchanging information about preferences and priorities, and seeking common
gains – both parts win (Win-Win);

− distributive, persuading the other part to accept an offer while disregarding the
counteroffers – this is a game of wining and loosing (Win-Lose).

The negotiation process often follows a differentiation-before-integration pattern
[16], where the negotiation starts with distributed behaviours until an impasse is
reached, and then the participants switch to integrative behaviours to avoid failure.

Most academic and non-academic literature shows a bias towards the integrative
strategy [17], because of two main reasons: (1) it represents a zero-sum solution, since
the gains obtained by one party represent losses from the other; and (2) the fundamen-
tal values behind the integrative strategy – interpersonal trust, cooperation and search
for mutually acceptable outcomes – are favoured by most scientists’ value systems.
We will also follow the policy of favouring the integrative strategy.

According to [16], the switch to the integrative behaviour requires the combination
of two conditions: an impasse and the willingness to engage in integrative behaviours.
We investigate another alternative: using groupware to foster users engaging in inte-
grative behaviours. To accomplish this endeavour, we have to further explain the
differences between the integrative and distributive strategies, based on the following
set of negotiation attitudes defined by [18]:

Competition - when one party tries to convince the other to accept a stake that is only
favourable to self interests. This clearly corresponds to a Win-Lose attitude.
Collaboration - when both parties collaborate to maximize common gains (Win-Win).
Compromise - when both parties split the benefits. It is a satisfactory, although not
necessarily an optimal result, since each party may not achieve all intended goals.
This attitude leads to moderate Win-Win situations.
Obliging - when one party accepts a stake that is only favourable to the other party.
This attitude occurs for several reasons, e.g. to close rapidly the process or simply
because the issue is perceived as not important. This is usually considered a Lose-Win
attitude. However, the literature reports that the obliging effects are unclear on the
long run[19]: producing positive effects by eliminating conflicts, but on the other
hand losing the opportunity to maximize common gains. In our context, we regard
this attitude as neutral in terms of integrative/distributive behaviours. This view as-
sumes that in SQFD parties engage in multiple negotiations, and thus the importance
of a single Lose-Win is reduced.

312 J. Ramires, P. Antunes, and A. Respício

Avoidance - when one or both parties decide to retreat. If there is a dependency on
the negotiation process, this attitude frustrates the other’s intentions (Lose-Lose strat-
egy). It is also used, for instance, when one party seeks to use time pressure to own
benefits (pursuing a Win-Lose strategy).

Based on the above attitudes, we adopted three fundamental requirements:

R 5. MEG will favour Win-Win behaviours, which includes support to collaboration
and compromise.

R 6. MEG will provide some resistance to Win-Lose and Lose-Lose behaviours, i.e.
competition and avoidance.

R 7. MEG will be neutral about the Lose-Win behaviour, i.e. obliging.

3 Design of the SQFD Negotiation Tool

In this section we describe our solution model. We start focusing on accomplish re-
quirements R1, R2, R3 and R4.

Given a pair (requirement, specification), the SQFD matrix stipulates the corre-
spondent correlation value, { }9,3,1,0: →× SPRSQFD , where R is the set of require-

ments, SP is the set of specifications and { }9,3,1,0 is the set of feasible correlation

values (a zero value corresponds to an empty cell).
When MEG starts, SPsRrSQFDrs ∈∀∈∀= ,,0 , meaning that the default C is zero.

Without loss of generality, in the following, we will consider a generic SQFD cell and
the negotiation of the correspondent C.

The initial bidder is the first stakeholder specifying a non-zero C, while the value
specified is the initial bid. MEG associates them to the cell through the concept of
ISSUE, stated as

),(bidderinitialbidinitialISSUE −−= , where bidinitial− { }9,3,1∈ , bidderinitial− ST∈ ,

and ST is the set of stakeholders.
The initial bid is public and its instantiation opens up the opportunity for other

stakeholders to express their preferences for C (requirements R1 and R2). All subse-
quent stakeholders attributing a value to the same cell will be treated as supporters or
opponents to the initial bidder. A stakeholder may instantiate more than one prefer-
ence for C.)(iSPREF specifies the preferences’ tuple of stakeholder iS :

ki ccSPREF ,,)(1= , where STSi ∈ , k is the tuple size (30 ≤≤ k), and

}9,3,1{∈jc is the j-th preference value iS stated (kj ≤).

Only stakeholders participating in the definition of C have a non-empty PREF tu-
ple (0>k). These preferences are part of the hidden knowledge maintained by the
system (requirement R4), since individual preferences are kept undisclosed to the
other stakeholders. Based on issues and preferences, MEG identifies the supporters
and/or opponents to the initial bided (requirement R3). Whenever a stakeholder has a
set of preferences compatible with the ISSUE (i.e. considering stakeholder iS , at least

one of the values in)(iSPREF is equal to the initial-bid), MEG registers a position in

Software Requirements Negotiation Using the Software Quality Function Deployment 313

favour of the initial bid. When there is no such compatibility, MEG registers a posi-
tion against. This is done by computing)(iSPOSITION for all STSi ∈ , where

−=∃−
=

otherwise,

)(if,
)(

Against

bidinitialSj:PREFFavourIn
SPOSITION ji

i .

Stakeholders are offered the possibility of attaching arguments to their positions
(requirement R3), which confers them additional negotiation abilities. This means that
for a stakeholder iS it may be defined a tuple of arguments, defined by

k0k,jOntology,ArgSTSArgArgSARGUMENTS jiki ≤≤∈∈= ,,,,)(1

An argument is a very short piece of text, such as “human factors” or “failure”.
MEG assumes the ontology necessary to implement this functionality has been previ-
ously supplied. The idea behind this approach is that the stakeholders do not have to
write their own arguments; they can select relevant and meaningful ones from the
ontology. We have not addressed this aspect in great detail, since the ontology varies
from organization to organization. In our experiments we relied upon generic road-
maps for quality assurance provided by software engineering literature.

We move now our attention to the negotiation support, which description is based
on the states machine displayed in Figure 2. MEG assumes that, if there is at least one
position against the initial bid, then there is a conflicting situation requiring a negotia-
tion process. To handle that process, MEG deals with the concept of cell state. We
consider an Equilibrium state, referred by E, that is reached whenever there is no
ongoing negotiation for that cell, either because: a) has no preference assigned; b) has
one single C; or c) there is no position against the current C. A negotiation is success-
ful whenever its end leads to state E, i.e., E is both the starting state and the only ac-
cepting state. All the other states (denoted by S, F, WW, WL and LL) are negotiation
states. In Figure 2, plain arcs correspond to transitions associated with user actions,
while dashed lines represent transitions related with system events (such as evaluating
positions or attitudes).

The machine moves from E to S when at least one stakeholder has a position
against the initial bid, thus starting a negotiation. F is reached when all positions
against the initial bid have disappeared and the negotiation process is close to a final.

WW

WWSATTi i =∃)(:

LL

AgainstSPOSITIONi i =∃)(:

AgreeSACCEPTi i =∀)(:
WL

Inquiring

WLSATTi i =∃)(:
LLSATTi i =∃)(:

Inquiring

AgreeSACCEPTi i ≠∃)(:

FavourInSPOSITIONi i −=∀)(:

LLSATTi i ≠∀)(:

AgreeSACCEPTi i =∀)(:

E

F S

Fig. 2. Negotiation support (states machine)

314 J. Ramires, P. Antunes, and A. Respício

MEG then requires all stakeholders involved in the negotiation to explicitly agree to
finish the process (thus moving to E).)(iSACCEPT denotes this explicit acceptance

of stakeholder iS when inquired by MEG. If iS agrees to finish the negotiation

AgreeSACCEPT i =)(and, otherwise, AgreeNotSACCEPT i −=)(.

The other states intimately relate with the attitudes we have identified in require-
ments R5, R6 and R7. Stakeholder iS may take an attitude)(iSATT of the following

types: Win-Win (WW), Win-Lose (WL), Lose-Win (LW) or Lose-Lose (LL).
The state WW is reached whenever a stakeholder takes a WW attitude. In this case,

MEG re-calculates the set of positions (returning to S) and, if the conflict has disap-
peared (thus moving to F), attempts to finish the negotiation. The WL state is reached
whenever a stakeholder changes preferences in a WL attitude. Movements out of WL
depend on the result of users’ inquire. Finally, the LL state is reached whenever a
stakeholder adopts a LL attitude, a situation that requires MEG to suspend the cell
negotiation until that attitude is revoked.

To understand the MEG functionality we also have to specify how these different
attitudes are detected by the system. The specification is provided in Table 1.

Table 1. Behaviour detection

Attitude Detection
Win-Win PREF became “closer” to initial-bid
Win-Lose “Firm” option has been selected (see section 4.2 for explanation)
Lose-Win PREF has been removed
Lose-Lose “Block” option has been selected (see section 4.2 for explanation)

3.1 Supporting the Integrative Approach

With requirements R5, R6, and R7 we declared the objectives to favour integrative
strategies and resist to distributive strategies. We now describe how we addressed
these issues. Expressing the problem in more concrete terms, our objective is to facili-
tate Win-Win, be neutral about Lose-Win, and create difficulties to Win-Lose and
Lose-Lose attitudes.

According to [20] an integrative strategy is founded on “principled negotiation”:
(1) separate people from problems; (2) focus on interests, not on positions; (3) create
options for mutual gains; and (4) use objective criteria. Our solution addresses these
principles in the following ways:

− The stakeholders’ identities are undisclosed. When a stakeholder originates an
issue, position or argument, the information about who took that action is not dis-
played. This approach allows separating people from the problem.

− MEG does not show the stakeholders’ preferred C, but only their positions rela-
tively to the initial bid. This approach gives some latitude to changing positions
and allows focussing more on interests than positions. MEG also allows the
stakeholders to freely change their positions at any time during the negotiation.

− MEG creates opportunities for mutual gains by proposing a consensus value. The
calculus of the consensus value is explained below.

− The ontology provides a standard mechanism for objectively arguing in favour or
against an issue.

Software Requirements Negotiation Using the Software Quality Function Deployment 315

Whenever possible, under a conflicting situation, MEG proposes a consensus value
for C that is obtained in the following way. Considering stakeholder iS , the stake-

holder weight in the negotiation is given by)10(1)(3−⋅−= ii nSSW , that decreases

with in , the number of Win-Lose or Lose-Lose attitudes iS has taken in the past.

),(xSUP i is the un-weighted preference for the correlation value }9,3,1{∈x stated by

that stakeholder, while),(xSWP i is the corresponding weighted preference, now

considering the stakeholder weight in the negotiation. These values are given respec-
tively by

=∃
=

otherwise,0

)(if,1
),(

xSj:PREF
xSUP ji

i and)(),(),(iii SSWxSUPxSWP ⋅= .

∈
=

STS i
i

xSWPxP),()(, }9,3,1{∈x , computes the total preference for x expressed by

the stakeholders. And finally, ())(max }9,3,1{ xPCONSENSUS x∈= is the correlation value

that obtained the highest number of occurrences in all the preferences’ tuples, or Null
if there is no such value.

In summary, we used majority voting, where votes are weighted according to the
number of distributive attitudes taken during the system use. This approach is aiming
at benefiting the stakeholders that take integrative attitudes. When a CONSENSUS
value is obtained, MEG proposes it as a fair solution to the negotiation process, on par
with the initial bid. MEG does not enforce the stakeholders to accept that value.

Now, we turn our attention to the mechanisms built in MEG to create difficulties to
Win-Lose and Lose-Lose attitudes. MEG allows Lose-Lose attitudes using a “block-
ing” mechanism (mentioned in Table 1). Basically, the blocking mechanism allows
one stakeholder to lead the negotiation to a suspended state (LL), so that the process
stops until the stakeholder removes that condition or the SQFD task is concluded
without consensus. To create some resistance to this attitude, MEG makes the user
interaction with this mechanism difficult: the action is not easily accessible and sev-
eral confirmations are required before activation.

MEG allows Win-Lose attitudes using a “firm” mechanism: one stakeholder may
express to the others that he/she has a firm position about C. When this mechanism is
activated, MEG informs all the other stakeholders and asks them if they accept that
position or not (moving to state WL). In case all stakeholders accept, the negotiation
process is finished, otherwise the negotiation continues. To create resistance to the
usage of this mechanism, when MEG informs the stakeholders that someone has a
firm position, it also informs about the total number of similar attitudes taken by that
stakeholder. This information may influence the stakeholders not to accept firm posi-
tions from persons that have wield too many distributive attitudes in the past.

4 Implementation Details

MEG is a client-server tool implemented with MS Excel 2002, Access and Visual
Basic 6.0. The system architecture is shown in Figure 3. The SQFD matrix was im-
plemented with an Excel spreadsheet using RTD technology. Users may interact with

316 J. Ramires, P. Antunes, and A. Respício

the spreadsheet but cannot directly modify the cells. Those modifications are re-
quested to MEGCLIENT, which communicates with MEGSERVER, which in turn
maintains the shared information stored on an Access database. The database is ac-
cessed through XML. The RTDSERVER updates the distributed spreadsheets using
DCOM. The interaction between Excel and RTDSERVER is explained in [21].

Fig. 3. System architecture

4.1 Illustration of MEG Functionality

Consider a set of three stakeholders: S1, S2 and S3. Figure 4 shows one SQFD matrix
with several conflicting situations and ongoing negotiations. Observe that some cells
present correlation values (1, 3 and 9, since 0 corresponds to a blank cell), while some
others show the symbols “?”, “F” and “L”. These symbols are shown when the cell is
under negotiation. The “?” indicates that the process is ongoing; while “F” and “L”
indicate that a user expressed a firm position and locked the cell, respectively. The
users do not directly manipulate the SQFD matrix. Instead, MEGCLIENT is invoked
whenever one user double clicks on a cell.

We use the sequence of actions shown in Table 2 to illustrate how users interact
with MEGCLIENT and the correspondent system reaction. Using MEGCLIENT to
modify the SQFD cell E5, S1 selects C=1. Since the cell was previously empty, MEG
creates an issue with 1 as initial bid and propagates it through the system. 1 will ap-
pear in E5 for all stakeholders. (Figures 5-8 illustrate interaction of S2 with MEG).

Afterwards, S2 decides to analyse E5, double clicking E5 to open MEGCLIENT.
The issue is displayed, showing the proposed correlation but without identifying S1 as
initial bidder (Figure 5). S2 does not agree with the correlation and selects C=3. MEG
recognizes two conflicting proposals for E5 and initiates a negotiation process. The
preferences list is constructed with one supporter (S1) and one opponent (S2) to the
initial bidder (Figure 6). Note that the identity of the supporters and opponents is
undisclosed. Furthermore, a “?” appears in E5.

S3 decides to enter the negotiation and proposes C=3. MEG recalculates the pref-
erences, to come with one supporter and two opponents to the issue. MEG also analy-
ses if there is a consensus value. Since no previous “firm” or “block” positions have

Software Requirements Negotiation Using the Software Quality Function Deployment 317

been used, the obtained consensus value is 3 (P(1)=1, P(3)=2 and P(9)=0). Therefore,
MEG proposes 3 to the stakeholders (Figure 7).

S1, analysing the consensus value, decides to adopt a compromising attitude and
adds 3 to the range of accepted correlations. MEG realizes there is one possible
agreement on 3 and requests confirmation from all stakeholders (Figure 8). All users
agree and the negotiation process finishes. The value 3 finally appears in cell E5.

Fig. 4. SQFD matrix (example from [1])

Table 2. Sequence of actions accomplished by S1, S2 e S3 and system events

Time S1 S2 S3 Action
t1 1 S1 selects C = 1
t2 S2 analyses cell
t3 3 S2 selects C = 3
t4 S3 analyses cell
t5 3 S3 selects C = 3
t6 MEG proposes C = 3
t7 1, 3 S1 adds C = 3 to selection
t8 MEG requests agreement

5 Evaluation

MEG was evaluated in two pilot experiments involving two stakeholders each. The
participants had the following background: (A) more that 30 years experience in
software development and requirements negotiation with outsourcing organizations;

318 J. Ramires, P. Antunes, and A. Respício

Fig. 5. MEGCLIENT in t2 for S2 Fig. 6. MEGCLIENT in t3 for S2

Fig. 7. MEGCLIENT in t6 for S2 Fig. 8. MEGCLIENT in t8 for S2

(B) 6 years experience in systems analysis; (C) project coordinator in a large com-
pany; and (D) analyst/programmer in statistics and operational research.

The experiments were accomplished in the context of a governmental agency re-
sponsible for the national pensions system. The project concerned the introduction of
a new formula for computing pensions. The goal set for the pilot experiments was to
construct and evaluate the SQFD matrix designated as “House of Quality” (HoQ).
The HoQ correlates preliminary lists of user and technical requirements, so that pri-
orities can be set early in the project.

The HoQ was specified in the following way. We interviewed stakeholder A, who
is deeply knowledgeable about the problem context. His recommendations allowed us
to specify the user and technical requirements. We followed ISO/IEC 9126 to finally
structure the quality requirements:

Software Requirements Negotiation Using the Software Quality Function Deployment 319

Functionality Apply new formula
Integrate with current formulas in the pension application

Reliability Detailed contingency plan
Usability Provide adequate training

Document new functionality
Clearly define modifications to existing processes

Maintenance Add new functionality with minimum operational modifications
Portability Detailed migration plans

The following list of technical requirements was specified by the authors based on
the recommendations of stakeholder A:

Functionality

Calculus of pensions for person P
Calculus and demonstration of pensions for entities E1 and E2
Store data according to user profile
Client can operate in different OS
Display specific legislation used in calculus
User authentication

Reliability Complete a transaction cycle without execution errors
Continue operation if data is not available
Continue operation if write error
Use secondary server if main server fails
Recover operations completed before a power failure

Usability Organize items logically in screen
Provide online explanations of calculus
Provide online help
Alert that new functionality is available

Maintenance Show how to realize calculus
Support configuring codes and parameters
Use several modules
Reuse some modules
Facilitate data access in every screen
Data must look the same in every printer

Portability Export data to Excel
Use install rules from internal doc PPP/2004
Use portability rules from internal doc 002/2004

The resulting SQFD is therefore an 8x24 matrix with 192 correlation values. Each
pilot experiment started with a brief tutorial about MEG, which took approximately
about 15 minutes. Then, the SQFD was negotiated by a pair of stakeholders until a
consensus was obtained. During the experiment, whenever necessary, additional help
about the MEG functionality was provided by the authors, which participated in the
process as observers.

Beyond obtaining the SQFD matrixes with correlations, we requested the partici-
pants to fill up a questionnaire with questions about the MEG functionality and us-
ability, as well as open questions about the most positive and negative aspects. The
following quantitative results were obtained:

320 J. Ramires, P. Antunes, and A. Respício

Functionality 1 (<) 2 3 4 5 (>)
Convenience (the available functions are appropriate for the task at hand) 4
Precision (the obtained results reflect your opinions) 2 2
Agreement (you agree with the consensus and majority voting approach) 3 1
Usability
Compreension (your effort to understand the application logic) 2 1 1
Learning (your effort to learn how to use the application) 2 1 1
Operability (your effort to control the negotiation process) 2 1 1

The list of positive and negative aspects was as follows:

Positive Participant
Easy finding point of agreement A
Knowing arguments from others to evaluate and eventually revise my position A
Better understanding of the overall ideas from stakeholders B
The "current situation" closes every time a change is made, which is positive because it obliges to
read modifications B

The system does not show how many others have confirmed their positions B
The negotiation model is efficient, although for top management it should be more graphical C
The integration of negotiation attitudes with the QFD affords obtaining reliable results D
Negative
Very slow A
Unusable by common users A
It is more intuitive to qualify correlations by names than numbers A
The situation where all stakeholders are in favour but one does not press the option "I agree" is
confusing, because the consensus was rejected but all were in favour

A

If 2 stakeholders obtain an agreement, that value goes to a cell. If another pair negotiates a different
value, the initial pair is not informed B

System is slow B
The information shown in "current situation" should be presented graphically C
The graphics should be more intuitive. For instance, it is more intuitive for a manager to see that there
are N stakeholders in favour or against a value C

The value obtained by consensus by a group of stakeholders may be substituted by another group of
stakeholders without notifying the first one D

Combining the quantitative and qualitative results obtained from the questionnaire,
we arrived at the following conclusions about MEG:

− The system is considered difficult to use. The three criteria related with usabil-
ity had the lowest score in the questionnaire. This situation is reinforced by nega-
tive comments from stakeholders A and C. Two stakeholders (A and B) also con-
sidered that the system had bad performance (this situation is caused by DCOM).

− All stakeholders agreed that the system is convenient to use. This position is
reinforced by several positive comments about understanding the overall posi-
tions from others, revising own positions and ease finding agreements.

− All stakeholders agreed that the consensus approach, complemented by
majority voting, is beneficial. The agreement criterion was the one that received
the highest score, reinforced by positive comments about the ease to reach con-
sensus.

Several minor functional and user interface details were also raised by the stake-
holders, for instance, about the use of the “I agree” button, renegotiation of cells over-
riding previous consensus, and difficulties in obtaining summary view of the negotia-
tion processes. These comments should be used in future versions of MEG but do not
reflect any significant issues about the core design decisions made.

Software Requirements Negotiation Using the Software Quality Function Deployment 321

6 Related Work

In Table 3 we show a comparison of MEG with related systems using four criteria: (1)
support to GSS features; (2) support to NSS features; (3) argumentation support; and
(4) dependence on the facilitator.

Table 3. Comparison between MEG and related systems

 GSS NSS Argumentation Facilitator
MEG Supports parallel activities

Shared memory compo-
nent
Proposes consensus value

Bid support
Supports private prefer-
ences

Based on IBIS
Uses pre-defined
ontology

No

Easy-
WinWin
[22]

Uses GroupSystems
Follows Win-Win meth-
odology

No No GroupSystems
requires facili-
tator

ME-
DIATO
R [23]

No Defines goals and utility
spaces
Identifies equilibrium
Suggests compromises

No Facilitator aids
the construc-
tion of shared
representation

Hermes
[24]

Discussion forum Updates process status
Recommends solutions
Finds inconsistencies

Based on IBIS No

Virtual
QFD [1,
25]

Web-based tools:
discussion panels, VoC
tables, evaluation panels
and QFD matrixes

No No Facilitator
manages data
during meet-
ings

Co-
Decide
[26]

Multi-user spreadsheet
extension
Offers OLAP features

No No No

Comparing EasyWinWin and MEG, we observe the former neglects negotiation
support. EasyWinWin uses generic GSS tools (GroupSystems’ brainstorming, catego-
rizing and voting tools) with two major consequences: dependence on the facilitator
to manage the technology; and limited support to parallel activities. EasyWinWin
follows the Win-Win principle [27] that all stakeholders should win, and guides the
users through a process where winning conditions are identified and negotiated until
mutual agreements are obtained.

MEDIATOR is strictly a NSS where problem representation evolves by sharing
individual points of view and searching for a point of equilibrium. The system uses a
set of dimensions to define goals and utility spaces. The evolution of utility spaces is
displayed in matrix or graphical form. Like MEG, compromising solutions can be
suggested. The system supports a facilitator who aids in the construction of a shared
problem representation.

Hermes is the system more closely related with MEG: it organizes arguments using
IBIS, assists the negotiation process with updated information about the process
status, recommends possible solutions, and also searches for inconsistencies among
users’ preferences. However, it offers limited GSS support, and the adoption of a
discussion forum makes it inadequate for handling a large number or requirements.

322 J. Ramires, P. Antunes, and A. Respício

Virtual QFD basically supports data sharing before and during meetings using the
Web. Available tools include discussion panels, VoC tables, evaluation panels and
QFD matrixes. Unlike MEG, a facilitator is required to manage data during meetings.

Finally, Co-Decide is a multi-user extension to a single-user spreadsheet. The basic
idea behind Co-Decide is to extend typical OLAP features to multiple users. Unlike
MEG, Co-Decide does not support the negotiation process.

With this necessarily brief overview we show that the fundamental characteristic of
MEG is bringing together several characteristics of GSS and NSS, in particular sup-
port to shared and private data, parallel work, bidding and argumentation.

7 Discussion

MEG improves the effectiveness of SQFD combining functionality attributed to GSS
and NSS (Table 4). A unique characteristic of MEG is that it attempts to stimulate
users to assume integrative attitudes based on a set of subtle interventions at the user-
interface level, underpinned by models of negotiation processes. Experimented solu-
tions included: 1) reducing the accessibility to Win-Lose and Lose-Lose attitudes,
making difficult the access to associated buttons and requesting unnecessary confir-
mations; 2) associating a cost to Win-Lose and Lose-Lose attitudes and showing that
cost to the group; 3) supporting Win-Win and Lose-Win attitudes, avoiding focus on
definite values, facilitating position changes and multiple choices; 4) promoting Win-
Win attitudes, recommending a consensus value based on majority voting. MEG also
supports ontology based argumentation. The objective is to reduce the levels of con-
flict by exchanging standard messages, meaningful in the domain, instead of free text.

Table 4. Combining GSS and NSS perspectives

NSS (high-conflict) GSS (low-conflict)
- Bargaining
- Firm positions
- Negotiation blocking

- Multiple parallel negotiations
- Stimulate integrative attitudes
- Avoid distributive attitudes
- Ontology based argumentation

One interesting outcome from this combination of GSS and NSS functionality is
that the resulting tool offers more latitude and flexibility handling group strategies:
the system supports low-conflict collaborative situations, but is also capable to cope
with increased levels of conflict in a flexible way. The results from the pilot experi-
ments indicate that the approach is considered beneficial for reaching consensus.

Acknowledgements

This paper was partially supported by the Portuguese Foundation for Science and
technology, Project POSI/EIA/57038/2004.

Software Requirements Negotiation Using the Software Quality Function Deployment 323

References

[1] G. Herzwurm, S. Schockert, U. Dowie, and M. Breidung, "Requirements Engineering for
Mobile Business Applications," Proceedings of the First International Conference on
Mobile Business, Athens, Greece, 2002.

[2] R. Zultner, "Tqm for Technical Teams," Communications of the ACM, vol. 38, pp. 79-91,
1993.

[3] Y. Akao, Quality Function Deployment: Integrating Customer Requirements into Prod-
uct Design. Cambridge, Massachusetts: Productivity Press, 1990.

[4] A. Stylianou, R. Kumar, and M. Khouja, "A Total Quality Management-Based Systems
Development Process," The DATA BASE for Advances in Information Systems, vol. 28,
pp. 59-71, 1997.

[5] S. Haag, M. Raja, and L. Schkade, "Quality Function Deployment Usage in Software
Development," Communications of the ACM, vol. 39, pp. 41-49, 1996.

[6] G. Antoniol, S. Gradara, and G. Venturi, "Methodological Issues in a Cmm Level 4 Im-
plementation," Software Process Improvement and Practice, vol. 9, pp. 33-50, 2004.

[7] H. In, D. Olson, and T. Rodgers, "Multi-Criteria Preference Analysis for Systematic Re-
quirements Negotiation," Proceedings of the 26th Annual International Computer Soft-
ware and Applications Conference (COMPSAC'02), Oxford, England, 2002.

[8] P. Chuang, "Combining the Analytic Hierarchy Process and Quality Function Deploy-
ment for a Location Decision from a Requirement Perspective," Advanced Manufactur-
ing Technology, vol. 18, pp. 842-849, 2001.

[9] V. Bouchereau and H. Rowlands, "Quality Function Deployment: The Unused Tool,"
Engineering Management Journal, pp. 45-52, 2000.

[10] V. Vroom and A. Jago, The New Leadership: Managing Participation in Organizations.
Englewood Cliffs: Prentice-Hall, 1988.

[11] E. Bellucci and J. Zeleznikow, "A Comparative Study of Negotiation Decision Support
Systems," Thirty-First Annual Hawaii International Conference on System Sciences, Ko-
hala Coast, Hawaii, 1998.

[12] Y. Reich, "Ai-Supported Quality Function Deployment," Artificial Intelligence in Eco-
nomics and Management, pp. 91-106, 1996.

[13] M. Bichler, G. Kersten, and S. Strecker, "Towards a Structured Design of Electronic Ne-
gotiations," Group Decision and Negotiation, vol. 12, pp. 311-335, 2003.

[14] J. Johannessen, J. Olaisen, and B. Olsen, "Information Management in Negotiations: The
Conditions under Which It Could Be Expected That the Negotiation Partners Substitute a
Competitive Definition of the Situation for a Cooperative One," International Journal of
Information Management, vol. 17, pp. 153-168, 1997.

[15] R. Lewicki and J. Litterer, Negotiation. Homewood, Illinois: R. D. Irwin, 1985.
[16] F. Harinck and C. Dreu, "Negotiating Interests or Values and Reaching Integrative

Agreements: The Importance of Time Pressure and Temporary Impasses," European
Journal of Social Psychology, vol. 34, pp. 595-611, 2004.

[17] R. Lewicki, S. Weiss, and D. Lewin, "Models of Conflict, Negotiation and Third Party
Interventions: A Review and Synthesis," Journal of Organizational Behavior, pp. 209-
252, 1992.

[18] K. Thomas and R. Kilmann, Thomas-Kilmann Con.Ict Mode Instrument. Escondido,
California: Blanchard Training and Development, 1974.

[19] R. Friedman, S. Tidd, S. Currall, and J. Tsai, "What Goes around Comes Around: The
Impact of Personal Conflict Style on Work Conflict and Stress," The International Jour-
nal of Conflict Management, vol. 11, pp. 32-55, 2000.

324 J. Ramires, P. Antunes, and A. Respício

[20] R. Fisher and W. Ury, Getting to Yes: Negotiating Agreement without Giving In. New
York: Penguin Books, 1983.

[21] P. Cornell, "Building a Real-Time Data Server in Excel 2002," Microsoft Corporation
2001.

[22] B. Boehm, P. Grünbacher, and R. Briggs, "Developing Groupware for Requirements Ne-
gotiation: Lessons Learned," IEEE Software, vol. 18, pp. 46-55, 2001.

[23] M. Jarke, T. Jelassi, and M. Shakun, "Mediator: Toward a Negotiation Support System,"
European Journal of Operational Research, vol. 31, pp. 314-334, 1987.

[24] N. Karacapilidis and D. Papadias, "Computer Supported Argumentation and Collabora-
tive Decision Making: The Hermes System," Information Systems, vol. 26, pp. 259-277,
2001.

[25] G. Herzwurm and S. Schockert, "Virtual Product Development," Proceedings of the Fifth
International Symposium on Quality Function Deployment and the First Brazilian Con-
ference on Management of Product Development, Belo Horizonte, Brazil, 1999.

[26] M. Gebhardt, M. Jarke, and S. Jacobs, "A Toolkit for Negotiation Support Interfaces to
Multi-Dimensional Data," SIGMOD Conference, pp. 348-356, 1997.

[27] B. Boehm and R. Ross, "Theory-W Software Project Management Principles and Exam-
ples," IEEE Transactions on Software Engineering, vol. 15, pp. 902-916, 1989.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 325 – 340, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Design and Field Evaluation of a Repeatable
Collaborative Software Code Inspection Process

Pushpa G. Koneri1, Gert-Jan de Vreede1,2,
Douglas L. Dean3, Ann L. Fruhling1, and Peter Wolcott1

1 College of Information Science & Technology,
University of Nebraska at Omaha

{pkoneri, gdevreede, afruhling,
pwolcott}@mail.unomaha.edu

2 Faculty of Technology, Policy and Management,
Delft University of Technology, The Netherlands

3 Marriott School of Management, Brigham Young University
doug_dean@byu.edu

Abstract. The use of software products in today’s world has increased
dramatically making quality an important aspect of software development.
There is a continuous need to develop processes to control and increase
software quality. Software code inspection is one way to pursue this goal. This
paper presents a collaborative code inspection process that was designed during
an action research study using Collaboration Engineering principles and
techniques. Our inspection process was implemented as a sequence of
thinkLets, chunks of facilitation skill, that were subsequently field tested in a
traditional paper-based and Group Support System (GSS)-based environment. It
was found to be successful in uncovering many major, minor as well as false-
positive defects in inspected pieces of code. Results illustrate the process’
efficiency in identifying duplicate defects thereby reducing follow-up time to
correct each defect. The inspection process’ flexibility was observed as it was
successfully applied to inspect both pieces of code or an entire module. Overall
the collaborative inspection process was considered to be productive for code
inspection and was satisfactory for the inspectors involved.

1 Introduction

A software defect is a “material breach of the contract for sale or license of the
software, if it is so serious that a customer can justifiably demand a fix or can cancel
the contract, return the software, and demand a refund” [21]. Software inspection is
aimed at detecting software defects thereby improving the quality of software
products. Inspections can focus on the design documents or the source code itself.
Fagan [8] defines inspections as a “formal, efficient and economical method of
finding errors in design and code”. Well-executed software inspections can add
substantial value to the software development process. According to Klimas [15],
around 80% of anomalies are removed through inspection, while one hour of

326 P.G. Koneri et al.

inspection will uncover as many anomalies as four hours of regression testing.
Furthermore, every hour invested in software code inspection can save up to five
hours in later stages [15].

Software can be inspected at different stages of its development [24]. In the
Software requirement specification stage the specifications requirements document is
inspected for its completeness. An inspection plan is developed that includes
requirement specification, description of inspection procedures, schedules and
milestones. In the Design stage, the adequacy of the software design is determined by
checking the consistency of design with the requirements specified. The various
design products can be inspected through analysis, simulation, and walkthroughs. In
the Software coding stage, the code is checked for its correct syntax, logic and
execution. Different aspect of codes such as logic error, data error, input/output error,
processing time, programming standards that are followed, and conflicts with the
specification requirements are also inspected. In the Software testing stage, the test
cases are inspected for their correct functional objectives. Test procedures, test
schedules and test milestones are also inspected for their accuracy. Finally, in the
Software Maintenance stage, inspectors check to keep the software product in line
with the current industry trends.

At each of these stages, software inspection requires the proper coordination of the
activities involved because inspecting a software product is not a one-person task.
Usually the software inspectors are not the same people who develop the product.
Also, inspectors have to work together to perform a comprehensive inspection as
modern software products are too large to be inspected by a single person. Finally, the
same elements of a software product are often inspected by more than one inspector
to ensure higher inspection quality. In other words, software inspection is a
collaborative process that has to follow a systematic approach to maximize both
inspection efficiency and effectiveness [6]. A well-defined software inspection
process lays out the ground rules that allow objective rather than subjective decision-
making regarding potential defects [4].

The research reported in this paper focuses specifically on software code
inspection. The objective of software code inspection is to identify and remove
software bugs before testing the code [9]. Each defect identified during code
inspection saves around 9 hours of time in later stages [9]. A survey [9] showed some
striking examples of the value of code inspections:

• IBM managed to remove 82% of all defects before testing even starts.
• AT&T found inspections led to 14% increase in productivity and tenfold increase

in quality.
• HP found 80% of the errors detected during inspections were unlikely to be

caught by testing.
• HP, Shell Research, Bell Northern, and AT&T all found inspections 20 to 30

times more efficient than testing in detecting errors.

This paper reports on a study in which a collaborative software code inspection
process was designed and evaluated in the field. The design of the process followed
Collaboration Engineering principles to create a repeatable inspection process that
inspection teams could execute by themselves [16,23]. Earlier research suggests that
code inspection is an example of a collaborative process that can potentially be

 The Design and Field Evaluation 327

facilitated by the participants themselves [10]. The evaluation of the collaborative
code inspection process was performed by applying it to two cases in two
organizations and determining the process’ perceived efficiency and effectiveness, as
well as the inspectors’ satisfaction with it. Furthermore, the process was evaluated in
two configurations: a paper-based implementation and a Group Support System
(GSS) based implementation.

The remainder of this paper is structured as follows. Section 2 discusses code
inspection and collaborative support for code inspections in more detail. Section 3
describes our research approach. The design of the collaborative code inspection
process is presented in Section 4, along with the criteria to evaluate the process.
Section 5 presents the results of the evaluation of process in the field. Finally, Section
6 discusses the findings and implications of our research and summarizes limitations
and future research directions.

2 Background

Code inspection methods can be broadly classified into two categories: Formal and
Informal Inspection methods. Formal Inspection methods are conducted in a well
defined systematic and structured manner. These methods mostly execute a detailed,
formal process and keep a record of the meeting results for later analysis to improve
both the quality of the code and also of the inspection process itself. Informal
Inspection methods do not follow any standard procedure. They can take place at
regular project status meetings or even over a coffee. They do not follow any specific
agenda and there is no documented output. Below we describe formal methods in
more detail and discuss collaborative support for such methods.

2.1 Formal Software Code Inspection

A typical formal software code inspection consists of six steps (table 1, [8,11]).
Formal code inspection methods have a number of advantages and disadvantages.
According to Wiegers [24], the key advantages include a more thorough coverage of
the software code, the identification of the most number of defects, and it being a
good test of understandability and maintainability of the code. Among the
disadvantages are issues like the need for thorough preparation prior to the inspection
meeting, and the high costs per defect because of the use of multiple inspectors and
the slow coverage [24].

Fagan [7] argues, the main reason for inferior inspection results is that the formal
inspection process is not well understood and is often poorly executed. The
satisfactory outcome of an inspection largely depends on how well the purpose of
inspection is defined for the inspectors. The purpose can vary from understanding the
code, maintaining the code, to identifying corrective actions on the defects uncovered.
A clearly understood purpose affects how the inspectors examine the code. Further,
the manual process of error documentation is tedious and prone to errors in case of
miscommunication among programmers and code inspectors. Thus the entire
inspection process can be time consuming and costly.

328 P.G. Koneri et al.

Table 1. Steps in a formal code inspection process

Step Description
Planning The materials to be inspected are arranged, the designated

inspectors are checked for their availability, and the meeting place
and the time is decided.

Overview The inspection team is briefed about the scope and purpose of the
code to be inspected to help them understand what is expected from
them. This may include the “distribution of documents, role
assignments and training in code inspection procedure, rules, and
checklists” [11].

Preparation The inspectors go through the software code individually and make
an effort to understand it completely.

Inspection
Meeting

The inspectors meet to identify issues (defects) in the code that is
inspected. They are encouraged to find as many major issues as
possible.

Rework The identified issues are reviewed by the code author and are
classified as defects that need to be corrected.

Follow up The moderator makes sure that all necessary actions are undertaken
on all identified defects. The moderator also has to make sure that
no defects are introduced during rework. Finally, he decides if there
is any possibility or need for re-inspection.

The Preparation step requires inspectors to understand the document and identify
defects individually. During the inspection meeting the moderator then collates these
defects. A lot of time is wasted here as inspectors often find and record duplicate
defects due to the lack of a mechanism to share the defects as soon as they are
identified by individual inspectors. Therefore a major amount of inspectors’ time is
spent on “redundant search” [6]. During a typical inspection meeting each inspector
waits for his turn to report defects to the moderator. This time could be used more
effectively for detecting new defects thereby increasing inspection productivity.

Another limitation of traditional inspection process is that it relies heavily on face
to face meetings [14]. If the inspectors are scattered in different geographical areas or
simultaneously working on different projects then it is difficult to find time and place
for inspection meetings. Mashayekhi et al. [18] propose a distributed collaborative
software inspection environment that removes spaces constraints and provides
sufficient structure to partially relax time constraints. In such an environment,
developers and inspectors need not be present in the same location for the code
inspection session. This considerably reduces the time and cost, and increases the
flexibility of inspection [18].

2.2 Collaboration in Software Inspection

Software code inspection is a collaborative task. Software code is typically inspected
by more than one inspector, each of which follows a set inspection guidelines and
works together with others to accomplish the common goal of identifying the defects.
Software code inspection is people-intensive. The inspection team typically consists

 The Design and Field Evaluation 329

of the author of the code, a moderator, individual inspectors and at times even a
software manager and a scribe. The moderator is responsible for getting the source
code from the author. (S)he coordinates with the inspectors and distributes the code.
The manager gives a short description about the code to the inspectors and explains
the purpose of the inspection and what is expected from the team. The individual
inspectors assemble to discuss the software code and detect as many defects as
possible. During the meeting the defects are reported and discussed. The scribe
records the identified defects in a formal defect log. The defect log is finally
submitted to the author of the code for further review. Thus, the software code
inspection process can be rightly termed as a collaborative process.

Inspection teams may use different types of tools to support their activities. Such
tools can support the inspection activities itself, the collaboration between the people
involved in the inspection process, or both. Computer support allows the inspection
teams to handle inspection artifacts online, to record inspector comments and create
project management reports which reduces much of the bulky printed materials and
the forms that are normally generated by inspections [20]. For example, Koo et al.
[17] designed a PC based application that supports verification and validation
activities based on Fagan [8] inspections. They feel that a desirable attribute of
inspection is “rigor” and using computers to support the process helps provide this.

Inspection teams also use groupware tools to “communicate, cooperate, coordinate,
solve problems” [13]. One particular family of groupware tools that is increasingly
being used in the context of code inspections are Group Support Systems (GSS). A
GSS provides a set of configurable modules which can be used to support different
collaborative activities for the collection, categorization, and evaluation of inspection
artifacts [13]. According to recent studies, a GSS supported inspection process can
significantly improve the number of defects found during software code inspection
and appears to be more effective and efficient in finding defects [6,10]). The
advantages of using GSS in code inspection include:

• GSS provide automatic report generation. All information collected during the
inspection session can be formatted into a formal report that summarizes the
entire session.

• GSS allow inspectors to work in parallel and also to look into other inspectors’
contributions. Thus inspectors can contribute and access information easily and
efficiently. As inspectors working in a group can view defects identified by other
inspectors, the number of duplicate defects is reduced.

• GSS allow inspectors to capture their comments themselves as they occur. This
reduces the risk of misinterpretations by the scribe or forgetting them at a later
stage in the inspection process.

• GSS support both distributed and face to face collaborative work. Inspectors need
not be in the same room. They can contribute from their own office desk and also
see what others have contributed.

However, GSS are typically complex systems to apply effectively in a sustained
fashion [3]. They require the assistance of a skilled facilitator to be configured
effectively [23]. For example, the GSS feature of anonymous communication appears
to impact group performance in inspection tasks: Vitharana and Ramamurthy [22]
found that non-anonymous groups were more effective and had a more positive
attitude towards theory inspection task than anonymous groups.

330 P.G. Koneri et al.

However, most organizations will not have the resources available to employ
skilled facilitators to operate GSS for inspection meetings [3]. It will be of more value
to such organizations to have access to a repeatable collaborative method that clearly
instructs an inspection team how to perform a collaborative inspection by themselves.
The design of such a GSS-based process is the objective of the research described in
this paper. The next section will elaborate on the research method that was used to
achieve this objective.

3 Method

Our research objective was to design and evaluate a repeatable collaborative code
inspection method in practice. Action research was considered the most suitable
research methodology for this purpose. Action research has the dual intention of
improving practice and contributing to theory and knowledge [1,5]. We followed a
model [25] that states that an action research study may consist of four activities that
can be carried out over several iterations: ‘Plan’ concerns exploration of the research
site and the preparation of the intervention. ‘Act’ refers to the actual intervention.
‘Observe’ concerns the collection of data during and after the actual intervention to
enable evaluation. Finally, the ‘Reflect’ activity analyses the collected data and infers
conclusions that may feed into the ‘Plan’ activity of a new iteration.

Action research was selected as our research approach for several reasons. First, it
is especially appropriate to address ‘how to’ research questions. Our research aimed
to develop a process to perform collaborative code inspections. Second, we felt that
there was too limited understanding of the collaborative aspects in code inspections to
study it in a constructed, and tightly controlled, experimental setting. Finally, action
research is very well suited for continuous learning. It allows researchers to
continuously evaluate and improve their products during a series of interventions. In
our research, we initially produced a few prototypes of the collaborative inspection
process. The way in which each of the four steps was executed is as follows:

• Plan: We conducted a literature review and approached other researchers working
on software code inspection. This fostered an understanding of limitations in the
existing inspection processes used, which was later considered while designing
the process for this research. This understanding informed the first rough process
design for collaborative code inspection which was modified and improved on in
a few iterations. Details of the process are presented in Section 4.

• Act: In this step we applied the collaborative code inspection process in practice
to observe and study it in action. We carried out two case studies:
• Case I: In an IT department of a Midwestern US Logistics firm, a piece of

C++ code was inspected. The inspector team consisted of 4 experienced
professional software developers with sound knowledge of software code
inspection. This case study helped to observe the performance of the
designed inspection process in an industrial setting.

• Case II: In a Computer Science department of a Midwestern University in
the US, an entire software module in PERL and HTML was inspected. The
inspector team consisted of 3 experienced student programmers. The module
inspected is a part of a larger application developed by the department and

 The Design and Field Evaluation 331

commercially applied in the field. Although most inspectors lacked industry
experience, they were experienced software developers with sufficient
knowledge of software code inspection. This case allowed to evaluate the
inspection process in an environment with less experienced inspectors.

• Observe: In this step we collected and analyzed data to evaluate the collaborative
inspection process. We used different instruments, including informal interviews
with a selection of the inspectors involved and questionnaires for all participants
in the inspection sessions. With the questionnaire we collected both, qualitative
and quantitative data regarding the perceived effectiveness and efficiency of the
inspection process and also regarding the participants’ satisfaction with the
inspection process and its outcomes. We also analyzed the actual inspection
results on various aspects such as numbers of Major/Minor defects identified and
the time taken for the inspection. Given the developmental character of the
research and the limited sample size, the analyses were exploratory in nature.

• Reflect: In the final step, we analyzed our observations. This pointed out some
limitations of the design process and set the stage for future research topics.

4 The Collaborative Inspection Process

This section presents the design of the collaborative inspection process. We first
elaborate on the foundation for the process design in terms of the design criteria that
were considered and a standard collaborative inspection process that was used as a
starting point for our design. Second, we describe the Collaboration Engineering
principles and techniques that we used to create our design. Finally, we present our
design and discuss its paper-based and GSS-based implementation.

4.1 Foundations

The collaborative inspection process was designed in a few iterations. Each of these
iterations was done with an eye on several design criteria. The iterations were
necessary to optimize the different criteria as much as possible. The following criteria
were considered:

• Efficiency: The collaborative inspection process should not require a lot of time
to arrive at satisfactory results.

• Ease of use by inspectors: The collaborative inspection process should not be
complex and should be easily understood by the code inspectors.

• Comprehensiveness of results: The process should be able to identify different
types of defects as defined before the inspection execution. Such defects may
include syntax and semantics errors, logic errors and inefficient ways of coding.

• Non-redundancy of results: The process should minimize the redundancy of
identified defects as much as possible. Having a group of inspectors inspecting
the code, the probability of identifying duplicate defects is considerable.

• Applicability to varying quality of software code: Software code can vary in
terms of quality from being well-documented superior code to inefficient code
with a large number of errors. The collaborative inspection process should be
effective for software code of different quality.

332 P.G. Koneri et al.

We did not design the collaborative inspection process from scratch as researchers
had already proposed different processes in the literature. We used the process
proposed by Dean et al. [6] from a case study with the Baan Development
Applications Department in the Netherlands as our basis. This process is based on
existing industry inspection standards and has two phases, each consisting of a
number of activities. In the pre-meeting phase, the code to be inspected is printed
with each page numbered and handed over to the inspectors. The inspectors
understand the code and the type of errors they have to identify. Then they identify
and document the defects that they find. In the discussion meeting phase, the defects
identified by the inspectors are collated into a common defect log. Overlapping
defects are removed to arrive at a list of unique defects which are classified as major
defects, minor defects, or false positives. False positives are defects which the
inspectors initially consider as defects but, after discussion, conclude that they are
false alarms. During the meeting, the inspectors also discuss any further doubts or
comments they have with respect to the code. After the meeting is adjourned, the
results should consist of a list of clear, unique, and classified list of defects which is
submitted to the author of the code for further review and resolution.

4.2 Collaboration Engineering

We designed the collaborative inspection process following Collaboration
Engineering (CE) principles and techniques. CE is an approach to designing,
modeling and deploying repeatable collaboration processes for recurring high-value
collaborative tasks that are executed by practitioners without the ongoing intervention
of professional facilitators [23]. Within CE several design steps are taken. The ones
relevant for our study are the decomposition of the process in terms of collaborative
activities, their classification in terms of patterns of collaboration, and the selection of
appropriate group facilitation techniques, called thinkLets, to guide the execution of
each activity [23]. These steps are normally executed iteratively.

The decomposition of the collaborative inspection process in terms of collaborative
activities was based on the standard process presented above. Each of the
collaborative activities in that process could be classified as aiming to achieve a
particular pattern of collaboration. A pattern of collaboration represents observable
regularities in the behavior and outcome that emerge over time in teamwork. Within
CE, six patterns of collaboration are used [2]:

• Generate: To move from having fewer concepts to having more concepts. The
goal of generation is for a group to gather or create concepts that have not yet
been considered by the group. Brainstorming is an example of a generation
process.

• Reduce: To move from having many concepts to having a focus on fewer
concepts deemed worthy of further attention. The goal of reduction is to decrease
a group’s cognitive load by limiting the number of concepts they must address.

• Clarify: Moving from less to more shared meaning for the concepts under
consideration. This is important because people frequently use the same label for
different concepts, use different labels for the same concepts, and use labels and
concepts that are unfamiliar to others.

 The Design and Field Evaluation 333

• Organize: To move from less to more understanding of the relationships among
concepts. The goal of organization is to reduce the effort of a follow-on activity.
A group might, for example, organize a list of ideas into a number of categories.

• Evaluate: To move from less to more understanding of the benefit of concepts
toward attaining a goal. The goal of evaluation is to focus a discussion or inform
a group’s choice based on a judgment of the worth of a set of concepts with
respect to a set of task-relevant criteria. For example, an evaluation process may
involve a team using a five-point scale to rate a set of alternatives.

• Build Consensus: To move from having more disagreement to having less
disagreement among stakeholders on proposed courses of action. The goal of
consensus building is to let a group of success-critical stakeholders arrive at
mutually acceptable commitments.

Table 2. Examples of thinkLets

ThinkLet
Name

Pattern of
Collaboration

Purpose

Directed-
Brainstorm

Generate
To generate, in parallel, a broad, diverse set of highly
creative ideas in response to prompts from a moderator
and the ideas contributed by team mates.

LeafHopper Generate
To generate, in parallel, ideas in depth and detail on a
focused set of topics.

BroomWagon Reduce To eliminate the least important ideas from a large set.

FastHarvest
Reduce &

Clarify

To have pairs of team members extract a list of key
ideas on assigned topics from a raw set of
brainstorming comments.

ChauffeurSort Organize
To organize ideas into categories through a short group
discussion of each idea.

Concentration Organize To remove overlap among ideas to create a unique set.

StrawPoll Evaluate
To evaluate a number of concepts on one or more
criteria.

MoodRing
Build

Consensus

To continuously track the level of consensus within the
group with regard to the issue currently under
discussion.

To achieve these patterns of collaboration in a group, a facilitator or moderator may
apply facilitation interventions called thinkLets. ThinkLets are repeatable, predictable,
transferable facilitation techniques to assist a group in reaching its agreed goal [3]. A
ThinkLet encapsulates an expert facilitator’s best practice for producing a known
pattern in the behaviors of a group of people who collaborate. Some thinkLet
examples are given in table 2. ThinkLets can be used and re-used as building blocks
for team process designs in any domain where collaboration is required [23]. A
sequence of thinkLets and the transitions from thinkLet to thinkLet comprise a design
for a collaboration process [16]. We used thinkLets for our collaborative inspection
process design to make the design more predictable and repeatable in practice.

334 P.G. Koneri et al.

4.3 The Design

The final design of the collaborative inspection process was the result of three
iterations. Early iterations were deemed less desirable because of perceived
inefficiencies in the discussion of found defects, the disproportionate amount of time
required to complete the process for pieces of code with a large number of defects,
and the incomplete recording of all defects. The final design is presented in figure 1.

The process starts with the inspectors individually familiarizing themselves with
the code and understanding it. They then are invited to individually identify and
record defects. Through the DirectedBrainstorm thinkLet they are stimulated to think
about different types of defects in parallel. Compared to traditional, sequential
brainstorming where participants speak in turn, the DirectedBrainstorm thinkLet has
shown to be more productive and creative [19]. During the brainstorming activity, the
participants use the page and line number on the printed version of the code. With
each page/line number combination they record a short description of the defect.

The discussion meeting phase starts with a Concentration thinkLet. The inspectors
first discuss their findings for each page of code. Only unique defects are reported as
the inspectors keep track of duplicate defects while listening to other inspectors’
findings. Identified duplicate defects are removed. Thus this activity generates a non-
overlapping and a clean list of defects. During the discussion, it may transpire that the
inspectors could identify more defects, triggered by each other’s contributions. If this
is the case, the inspectors perform the DirectedBrainstorm thinkLet again followed by
a Concentration to remove the duplicates from the additional defects.

Fig. 1. The design of the collaborative inspection process

 The Design and Field Evaluation 335

The resulting unique list of defects is then classified into the pre-defined defect
types (major, minor, false positive) using the ChauffeurSort thinkLet. In this activity,
the inspectors determine for each defect what type it is. Different opinions are aligned
through a brief discussion. The result is a defect list consisting of unique, non
overlapping defects which are clearly described and classified into the pre-defined
categories. This list is handed to the author of the code for correction.

The collaborative inspection process design was evaluated in two implementations.
Each thinkLet specifies which capabilities have to be afforded to the group so that
they can follow the thinkLet’s rules during its execution [16]. We implemented the
process on traditional “paper-based” tools (prepared defect sheets, voting stickers
etc.) and on a GSS, GroupSystems Workgroup Edition 3.4. In GroupSystems, each
code page was assigned to a separate entry in an outline. Inspectors could enter defect
descriptions with associated source code line numbers into their respective page entry.
The discussion of the ChauffeurSort was focused by having the inspectors vote on
their preferred classification for each defect in GroupSystems’ Vote module.

Both the paper-based and GSS-based implementations were executed in each case
study. The results of the case studies are presented in the following section.

5 Results

This section presents the results from the two case studies. Data was collected and
analyzed regarding the process’ effectiveness, efficiency, and inspector satisfaction.

5.1 Inspection Effectiveness

The process was evaluated for its effectiveness in uncovering most of the defects. In
Case I, the project manager knew the expected number of defects in the code before
the inspection was conducted. After the session the total number of defects found was
more than the expected number. Also table 3 shows that a considerable number of
major defects were uncovered in all the sessions. We cannot compare the number of
major defects found across sessions as every session inspected a different set of code.

Table 3. Measured inspection effectiveness

 Major Minor Duplicate False-positives Lines of Code
Paper
Case I 16 9 15 4 267
Case II 6 49 14 5 592
GSS
Case I 21 3 2 3 319
Case II 5 23 0 2 137

The data show that the collaborative code inspection process does not favor one

type of defect over others. Finding minor defects is essential for a number of reasons.
First, the distinction between major and minor helps the code author to prioritize the
corrections to make. Second, such a classification is conform international standards

336 P.G. Koneri et al.

on coding and documentation. This serves programmers other than the code author.
The collaborative inspection process also appeared to be effective in identifying false
positive and minor defects and in classifying them. This helped in reducing the
amount of time spent by the developers on false alarms. Thus the process not only
helps to improve the code, but also saves time on correcting false errors.

To measure the inspectors’ perception on the process’ effectiveness, a questionnai-
re was used on the scale of 1-7, where 7 was the most positive. The reported values in
the table 4 are the averages for the questions asked on the effectiveness of the process.
Feedback from the questionnaire supported the above findings and indicated that the
inspection process was perceived to be effective in uncovering most of the errors.

Table 4. Perceived Effectiveness of the process, mean (standard deviation)

Perceived Effectiveness of the process Case I Case II
Paper-based Inspection 4.89 (1.13) 5.83 (1.04)
GSS-based Inspection 4.78 (1.17) 5.39 (1.42)

5.2 Efficiency

The process’ efficiency was evaluated in terms of ease of understanding of the
process, flexibility of the process i.e. ability to incorporate last minute changes, and
the repeatability of the process. From the sessions executed, it was observed that the
inspectors found the inspection process very simple and extremely easy to understand.
The moderator’s instructions were considered to be thorough and clear. As all
inspectors had a strong software background, it was not surprising they were very
comfortable using the GSS tool. In Case I, a single piece of C++ code was inspected
whereas in Case II a complete module consisting of different software programs was
inspected. The efficiency results for both these sessions are almost similar as seen
from the table 5. This illustrates the process’ flexibility.

To measure the inspectors’ perception on the process’ efficiency, a questionnaire
was used on the scale of 1-7, where 7 was the most positive (table 6). As can be seen,
the inspectors had a positive perception on the process’ efficiency. They also found
the process to be repeatable and versatile. Though in this research the inspection
process was used only to inspect software codes, the inspectors suggested that it could
easily be used to inspect software requirement documents, functional design
documents, and other artifacts by defining new defect categories relative to the
inspected document.

Table 5. Measured inspection efficiency

Formal defect log

generation
Removing overlaps and
refining the defect list

Defect
classification Total

Paper
Case I 30 min 10 min 5 min 45 min
Case II 47 min 5 min 10 min 62 min
GSS
Case I 0 min 7 min 5 min 12 min
Case II 0 min 5 min 5 min 10 min

 The Design and Field Evaluation 337

Table 6. Perceived Efficiency of the process, mean (standard deviation)

Perceived Efficiency of the process Case I Case II
Paper-based Inspection 5.33 (1.76) 5.47 (1.77)
GSS-based Inspection 5.40 (1.30) 6.07 (1.42)

5.3 Satisfaction

The inspectors’ feedback indicated that they were satisfied with the collaborative
inspection process and considered it to be very useful. Table 7 (scale of 1-7, 7 most
positive) shows that the inspectors gave positive feedback on the inspection process
and were satisfied with the process and the outcome of the meeting. They indicated
that with this process, it was likely to attain stated inspection goals.

Table 7. Perceived Satisfaction, mean (standard deviation)

Perceived satisfaction Case I Case II
Satisfaction with the process
Paper-based Inspection 5.33 (0.65) 4.75 (1.06)
GSS-based Inspection 5.83 (0.83) 6.25 (0.87)
Satisfaction with the outcome
Paper-based Inspection 5.25 (0.75) 5.00 (0.85)
GSS-based Inspection 5.50 (0.80) 6.08 (0.67)

5.4 Conclusion

The results show that in both cases the perceived effectiveness was somewhat higher
for paper-based inspection than GSS-based inspection. For perceived efficiency and
user satisfaction the results are reversed. Overall, the results for the three performance
metrics are well above average and hence satisfactory. Thus, the collaborative inspec-
tion process appears to perform well in both paper-based and GSS-based formats.

6 Discussion and Conclusions

The collaborative inspection process was successful in uncovering many major, minor
as well as false-positive defects in the inspected code. The process was found to be
efficient in identifying duplicate defects thereby reducing the code author’s valuable
time working on the submitted defect list. The inspection process’ flexibility was
observed as it was successfully applied to inspect both pieces of code or an entire
module. Overall the collaborative inspection process was considered to be productive
for code inspection and gave a sense of satisfaction with the inspectors involved. In
this final section, we first discuss and reflect on the results of our research. We
conclude by identifying the limitations and future research directions.

338 P.G. Koneri et al.

6.1 Discussion

While most research on software code inspections focuses on formal inspection
methods and tool support for defect recording and tracing, our study concentrated on
the design of collaborative procedures to execute an inspection. We built on the
research by Dean et al. [6] and found similar encouraging results. Yet there are a
number of noteworthy differences. First, in addition to minor and major defects, we
also included a focus on false positives and duplicate defects. In line with Grünbacher
et al. [12], we felt this would benefit the quality of the inspection results. Second, our
process was executed by a dedicated moderator that was not part of the inspection
team itself. In Dean et al.’s [6] work, the moderator was one of the software
professionals. This was found to impact the fluency of the inspection process as the
moderator had to divide his attention between finding defects and guiding the process.

We focused on the design of the process and not directly on the collaborative tool
support. The process design was evaluated through a dual implementation in a paper-
based and GSS-based environment. In fact, this research’s contribution is that it
showed that a sound process design can be implemented and executed successfully in
different technological environments. Both implementations were found to produce,
to a large extent, similar results.

Yet, the GSS-implementation proved to be more useful for a number of reasons.
First, consistent with [12], it is apparent that using the GSS-environment saved
significant time on process execution. While generating a formal defect log, all
identified defects by the inspectors were discussed and collated into a common file. In
a paper-based method this was executed as a separate activity that took around 30-50
minutes of the execution time. Moreover, the time spent on this activity is directly
proportional to the number of defects identified by the inspectors. Second, the GSS
allowed inspectors to work in parallel and view fellow inspectors’ lists of defects.
This transparency avoided to some extent recording duplicate defects as well as
reduced the time required to remove the overlapping defects from the defect log.
Third, the voting feature of the GSS supported the categorizing of identified defects.
Finally, the GSS offered automatic report generation documenting the entire session
data into a formal report. However, even though the paper-based implementation may
been more time-consuming, it still yielded satisfactory results. The inspectors pointed
out that they were relaxed and at ease while working truly alone in the pre-meeting
part of the inspection. This could be attributed to the absence of peer pressure as no
inspector was aware of the productivity of their colleagues.

6.2 Limitations

A number of limitations have to be taken into account when interpreting the results of
our research. First, the mindset of the participating inspectors may play quite a
significant role in relation to the quality of the inspection. Unenthusiastic inspectors
may not be willing to give their 100% to the inspection session which will affect the
measured and perceived quality of the inspection process. Although we felt we were
working with enthusiastic inspectors, we were not able to take this into account.
Second, the GSS application used in this research is a general purpose tool; it is not
specifically designed for code inspection. Therefore, inspectors may have experienced

 The Design and Field Evaluation 339

sub-optimal functionality concerning the recording of defects. Finally, the sample size
of the study is limited. However, we feel that the limited sample size is offset by the
high level of realism that we achieved by executing the process in two real situations.

6.3 Future Research Directions

We foresee two directions for future research. First, our collaborative inspection
process was implemented in a co-located collaborative environment. It is useful to
explore the value of the collaborative inspection process in a distributed environment.
Such an exploration could focus on comparing the efficiency, effectiveness, and
satisfaction between the co-located and dispersed executions. Second, our research
design did not allow for an in-depth comparative analysis of the paper-based vs. GSS-
based implementation. Our results only let us conclude that our process design
worked well in both implementations. An in-depth comparison between the paper and
GSS version of our process would require, for example, an experimental design in
which a number of inspection groups all inspect the same piece of code, half of the
groups in the paper environment and the other half in the GSS environment.

References

1. Argyris, C., Putnam, R., MacLain Smith, D.: Action science – Concepts, methods and
skills for research and intervention, San Francisco: Jossey-Bass (1982)

2. Briggs, R.O., Vreede, G.J. de, Dean, D.L.: The Process and Pattern Layer in Collaboration
Engineering, working paper, University of Nebraska at Omaha (2005)

3. Briggs, R.O., Vreede, G.J. de, Nunamaker, J.F. Jr.: Collaboration Engineering with
ThinkLets to Pursue Sustained Success with Group Support Systems, Journal of
Management Information Systems, 19(4), (2003) 31-63

4. Budd, A.: The Importance of Process in Web Design. http://www.andybudd.com-
/archives/2004/01/the_importance_of_process_in_web_design/index.php. Retrieved on 10
November, 2004 (2004)

5. Checkland, P.B.: Systems thinking, systems practice, Chichester: Wiley & Sons (1981)
6. Dean, D.L., Rodgers T., Nunamaker, J.: Increasing Inspection Efficiency through Group

Support Systems, Proceedings of the 37th HICSS, IEEE Computer Society Press (2004)
7. Fagan, M.: Hitting the bull’s eye – Improving your quality, schedule, cost, and

performance, Proceedings, 11th International Software Quality Conference, (2001)
8. Fagan, M.E.: Design and Code Inspections to Reduce Errors in Program Development.

IBM Systems journal, 15(3), (1976) 182-211
9. Ganssle, J.G.: A guide to Code Inspection, http://www.ganssle.com/Inspections.pdf,

Retrieved on 02 June 2004 (2001)
10. Genuchten, M.V., Dijk, C. van, Scholten H., Vogel, D.: Using Group Support Systems for

Software Inspections, IEEE Software, 18(3), (2001) 60-65
11. Gilb T., Graham D.: Software Inspection, Addison – Wesley, Wokingham, England (1993)
12. Grünbacher, P., Halling, M., Biffl, S.: An Empirical Study on Groupware Support for

Software Inspection Meetings, Proceedings of the 18th IEEE International Conference on
Automated Software Engineering (2003)

13. Halling, M., Grünbacher, P., Biffl, S.: Groupware Support for Software Requirements
Inspection, Workshop on Inspection in Software Engineering, (2001) 20-29

340 P.G. Koneri et al.

14. Harjumaa L., Hedberg, H., Tervonen, I.: A path to virtual software inspection, Proceedings
of Asian-Pacific Conference on Quality Software, IEEE Computer Society Press, Los
Alamitos, CA, (2001) 283-287

15. Klimas, E.: SmallTalk Code Inspection Process, http://www.lineaengineering.com-
/Resources/Inspection/inspection.html, Retrieved on 27 April 2004, (2001)

16. Kolfschoten, G.L, Briggs, R.O., Appelman, J.H., Vreede, G.J. de: ThinkLets as Building
Blocks for Collaboration Processes: A Further Conceptualization, Lecture Notes in
Computer Science, Berlin, Springer Verlag, (2004)

17. Koo, S.R., Son, H.S., Seong, P.H., Yoo, J., Cha, S.D., Son D.S., Choi, S.S.: Toward Easy
Inspection and Effective Use of Formal Methods in NPP Software Fields, Transactions of
the American Nuclear Society, 86(1), (2002) 73 – 74

18. Mashayekhi, V., Drake, J.M., Tsai, W.T., Riedl, J.: Distributed, Collaborative Software
Inspection, IEEE Software, 10(5), (1993) 66-75

19. Santanen, E., Briggs, R.O., Vreede, G.J. de: Causal Relationships in Creative Problem
Solving: The role of active facilitation in EBS, Journal of Management Information
Systems, 20(4) (2004) 169-200

20. Sify, H.P.: Identifying the Mechanisms to Improve Code Inspection Costs and Benefits,
PhD. Dissertation, University of Maryland (1996)

21. Software Defects: www.kaner.com/pdfs/defects4.pdf, Retrieved 29 May 2004 (1996)
22. Vitharana, P., Ramamurthy, K.: Computer-Mediated Group Support, Anonymity, and the

Software Inspection Process: An Empirical Investigation, IEEE Transactions on Software
Engineering, 29(2), (2003) 167-180

23. Vreede, G.J. de, Briggs, R.O.: Collaboration Engineering: Designing Repeatable Processes
for High-Value Collaborative Tasks, Proceedings of the 38th Hawaiian International
Conference on System Sciences, Los Alamitos: IEEE Computer Society Press (2005)

24. Wiegers, K.E.: Improving Quality through Software Inspections, Software Development,
3(4), (1995) 55-64

25. Zuber-Skerritt, O.: Action research for change and development, Gower Publishing (1991)

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 341 – 350, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Handheld-Based Electronic Meeting Support

Gustavo Zurita1 and Nelson Baloian2

1 Universidad de Chile, Departamento de Sistemas de Información y Auditoría,
Diagonal Paraguay 257, Santiago de Chile, Chile

gnzurita@facea.uchile.cl
2 Universidad de Chile, Departamento de Ciencia de la Computación,

Avenida Blanco Encalada 2120, Santiago de Chile, Chile
nbaloian@dcc.uchile.cl

Abstract. Many studies have reported on the problems that arise when trying to
carry out successful meetings. Various authors have developed computerized
tools for supporting the different stages of a meeting, but most of these have
been conceived for large PCs or Notebooks, which tend to distract the partici-
pants from face-to-face interaction. Also, many meetings are organized in a
spontaneous manner, sometimes with no access to PCs. In this paper, we pro-
pose a meeting support tool for handhelds that overcomes many of the problems
inherent in the use of devices with large screens. However, the small size of
handheld displays leads to other problems, especially in human-handheld and
human-human interactions. The system proposed here is designed using gesture
and concept-map principles that enable these problems to be resolved.

1 Introduction

Face-to-face meetings are a frequent activity in any organization [1], and as such their
effectiveness and productivity is an important requirement [1], [2]. Various surveys
indicate that meetings take up 40% to 50% of management’s time. One-half of meet-
ing participants found them to be lacking in productivity, with 25% of the time de-
voted to irrelevant matters and the total time they take up now twice what it was 20
years ago [3]. Thus, meetings have come to be seen as time-consuming and unproduc-
tive [4].

Despite the existence of procedures, rules and mechanisms designed to ensure that
meetings are both effective and productive [1], [5], [6], they continue to suffer from
various problems (see Section 2) such as no agenda or agenda-setting process, lack of
a common workspace for participants, difficulties in the drawing up of minutes, lack
of follow-up on commitments, and the absence of voting mechanisms [2], [7], [9].

To solve these problems, technological scaffolding has been developed and tested
based on personal computers (PCs). Known as EMS (Electronic Meeting Support),
these solutions provide procedures and mechanisms aimed at achieving effective and
productive face-to-face meetings [6], [8]. Nevertheless, it has been demonstrated in
[10] and [11] that the PC and notebook interfaces and screens used for meeting sup-
port capture the attention and cognitive concentration of participants to such an extent
that social interaction is reduced. Furthermore, if PCs are employed, meetings must be

342 G. Zurita and N. Baloian

held in specific physical spaces [9], [12], making coordination and cohesion more
difficult in project scenarios that involve people from various organizations or work
teams who need to meet face-to-face in a variety of locations [12]. As pointed out in
[11], the ability to bring technological support to the meeting place requires the mo-
bility offered by notebooks and handhelds. According to [10], handhelds are easier to
use as a support tool for face-to-face meetings.

In [13], [14] and [15] it is posited that handheld portable computer devices are non-
obstructive and create a feeling of belonging to the user, given that they may be em-
ployed in various organizational tasks and can be carried permanently on one’s person
to any place and used at any time. Handhelds are considered to be a good platform for
reading brief, concrete content because their interface is simple and insensitive to
content formats, thus allowing information to be read quickly, and are also felt to be
suitable for providing support to diverse collaborative work groups [16]. However,
their reduced screen size and use of virtual keyboards or widgets for entering and
handling information introduces new complexities into the person-handheld interac-
tion [17].

In this paper we propose a prototype for a face-to-face meeting support system
based exclusively on the use of handhelds wirelessly connected through a peer-to-peer
ad-hoc network. This system allows people to meet in any place where the handheld
connection is able support the various tasks and processes, both individual and col-
laborative, that arise over the life-cycle of a meeting. Its design incorporates the fol-
lowing principles: a) Interaction is based exclusively on gestures for managing, orga-
nizing and reviewing the notes made by meeting participants. Users are limited to
employing a handheld pen and freehand text or graphics, thus minimizing the number
of widgets and virtual keyboards; b) Content entered during the meeting is structured,
whether it be individual or collaborative notes through three-dimensional concept aps,
thereby giving “depth” to the handheld screen. In addition, the system provides the
necessary support for group memory, minutes, agenda organization and various
commitment and voting processes.

2 Problems of Face-to-Face Meetings

The most common problems of face-to-face meetings as found in [2], [7], [9] and [18]
may be characterized in terms of the different meeting stages or life-cycle [18], which
consists of an implicit sequence of activities that occur before (pre-meeting), during
and after (post-meeting) any actual meeting.

− Pre-meeting: Non-existence of a work agenda or deficiencies in its construction,
absence of times assigned for each agenda item. Lack of work methodologies for
organizing meeting attendees’ contributions, presenting an idea to the other par-
ticipants, contributing and discussing ideas and recording notes.

− During the meeting: Absence of organization and coordination of attendees’
participation due to the lack of an individual or collaborative work area where
notes, points of view, ideas and opinions can be shown. Lack of follow-up closely
based on the agenda. Discussion of irrelevant matters and information due to
absence of agreement mechanisms and the consequent loss of time. Non-existence
of records of commitments made by attendees.

 Handheld-Based Electronic Meeting Support 343

− Post-meeting: Inability to carry out a follow-up due to the lack of group memory in
the form of a record of notes, activities, tasks, progress and conclusions, resulting
in the loss or forgetting of participants’ contributions. Deficient or non-existent fol-
low-up of commitments, hindering future follow-up action and between-meeting
activities.

In order to ensure that meetings are effective and productive [2], the system should
support the following elements: a) construction and follow-up of work agenda, b)
organization and coordination of individual and collaborative work, c) negotiation for
arriving at agreements, and d) follow-up and management of commitments.

3 Related Work

Various analyses have been carried out of both proposed and already-developed EMS
systems that use freehand input, concept maps and especially handhelds, as well as
the functionalities offered by handhelds for supporting face-to-face meetings: agenda
creation, distribution and discussion support; task and processes development support;
distributed on-screen viewing; individual note-making; and generation of minutes (see
Table 1).

The Dolphin project [19] uses PCs connected to a LiveBoard to provide support for
face-to-face meetings and persons distributed among different physical locations.
Dolphin uses concept maps to link up the different issues dealt with at a meeting, so
that a given issue can give rise to other sub-issues. Each issue and sub-issue is han-
dled through a shared work area, with the option for attendees to make personal and
private notes in the same system.

The We-Met project [20] supports face-to-face meetings using tablet PCs for each
of the participants all of whom are interconnected through a PC. Attendees can work
in the same virtual work area on their tablet screens, which is shared through the con-
nection with the PC and is freehand input-based. The project’s objectives are (a) to
facilitate communication between meeting participants, and (b) to facilitate documen-
tation of knowledge and information generated by the meeting for easy review. Users
of this system found that it was necessary to have private work areas where they can
develop ideas that are not yet ready to be presented to the other attendees.

The Pebbles project [21], though not conceived to be used exclusively for meet-
ings, can be used to provide support to collaborative groups in various contexts. It
consists of applications that interconnect handhelds through a PC. The devices are
used as though they were PC mice or keyboards. The project’s objective is to mediate
social interaction techniques between persons through a shared screen.

RoamWare [10] is a handheld architecture that supports informal face-to-face reun-
ions, including those held in such places as corridors. Each handheld can detect and
interconnect to others located within a limited space, while the participants make
notes on their devices. These notes are sent to a central computer where they are
stored for later distribution.

Costa et al. [22] have developed the idea of combining handhelds and a PC to ex-
plore the relationships that may exist between a meeting and these technologies. They
show that the use of handhelds is neither annoying nor obstructive to the flow of the
meeting, and suggest the devices be utilized as tools to generate reports, a traditional

344 G. Zurita and N. Baloian

technique for linking meeting processes to organizational ones. The authors of the
study also attempt to improve meeting report generation by making use of the
capacities handhelds can contribute to the EMS for managing individual and group
information.

Table 1. Comparison of face-to-face meeting support systems using handhelds

Characteristics of imple-
mented/proposed EMS Dolphin We-Met Pebbles Roam-

Ware
Costa et

al.
Antunes

and Costa

Freehand input based
Use of concept maps
Use of handhelds Tablet PC

Use of PCs
Wireless network interconnec-
tion

Support for creation, distribu-
tion and discussion of agenda

Support for development of
tasks/processes

Distributed viewing of tasks and
processes on screen

Ability to take individual notes
Creation of minutes

Antunes & Costa [23] have studied the impact of including handhelds as a support
to meetings, pointing out the important role they can play in managing individual
information. The authors note the following requirements: a) creation and distribution
of an agenda; b) support for the development of the issues on the agenda; c) recording
of decisions taken; d) inclusion of the foregoing in the minutes for later distribution;
e) support for typical meeting structures; and f) support for various agenda, issue,
decision, report and logistics templates.

Table 1 shows the findings of a comparative analysis of the above-described meet-
ing support systems. Particularly noteworthy is that only one system uses concept
maps to support collaborative work (Dolphin), while Antunes and Costa are the only
ones to propose the creation, distribution and discussion of the agenda. None of the
systems provides any support for negotiations aimed at reaching agreements or for
commitment follow-up, and most importantly, none use gestures as a solution to the
restrictions imposed by the small size of the handheld screen.

4 Design Principles

The system design principles proposed in this paper that constitute a novel contribu-
tion compared to other solutions are described below:

− Handheld screens acquire greater depth through three-dimensional concept
maps. The provision of shared visual spaces may be seen as a facilitator for vari-
ous processes between persons working in groups because of the support it gives to
externalization. This plays an important role in the organization and creation of
knowledge in the sense that these spaces support the transition from tacit and indi-

 Handheld-Based Electronic Meeting Support 345

vidual knowledge to explicit knowledge. Shared visual spaces such as concept
maps have been applied in discussion groups [24], design groups and collaborative
activities. We propose the use of concept mapping techniques for providing sup-
port to group design of meeting agendas and meeting development as well as group
memory handling. Furthermore, handheld screens can be given greater depth by
virtue of the fact that the explosion of each node implies the generation of a new
screen on which an aspect specified by the parent node can be worked on, thus re-
sulting in the creation of three-dimensional concept maps. The third dimension af-
fords the option of overcoming the disadvantage of handhelds’ reduced screen size
by displaying a new screen for the development of additional aspects.

− Interface simplicity: Gestures. The design of interfaces for applications that can
be built for handhelds pose a challenge due to the small size of the screen. Touch
screens are an existing freehand input-based technique for facilitating communica-
tion between the user and a handheld, allowing the user to create widgets (buttons
for actions such as review, insertion, deletion and change of location). Note, how-
ever, that these decrement the amount of useful screen space (see
http://www.palmsource.com/developers), a single button using up to 10% of the
device’s screen. Gestures are entered with a pen through predetermined designs,
with a result that is efficient, powerful and practical [25], albeit some gestures are
not easily remembered and may be difficult to recognize. Generally speaking, the
design of a gesture-based interface should incorporate the following three consid-
erations: (a) gestures should be easy to learn and remember, (b) they should be re-
liably recognizable by the system, and (c) users should be continually informed on
the available options. In addition, a zoom feature allows the user to see the struc-
ture of the concept maps on the handheld and sounds can be associated as a support
to the use of gestures.

5 Prototype Design of HEMS

The proposed prototype, which we will call HEMS (Handheld-Based Electronic
Meeting Support), is oriented toward providing support for dealing with the problems
identified at the end of Section 2. Figure 1 shows the functionalities that HEMS can
support (double-line rectangles) within the meeting life-cycle, the various gesture and
concept map principles (ovals) that support the complete system, and the support
components it provides for the individual work space, the group work space, voting,
and the assignment and monitoring of time periods.

Since handhelds’ reduced screen size restricts the amount of information that can
be displayed, the design of the interface must be given particular attention [17].
According to [26], one solution for obtaining effective interaction between the user
and screen content is to use pen-based gestures. A pen-based system facilitates the
use of freehand input and is a natural method of making notes during a meeting [20].
Gestures can also support creative processes such as brainstorming, shared visual
representations, collaborative publishing of graphic designs, and visual sketch
displays [24]. Gestures on the screen will be automatically detected as such and
interpreted semantically by HEMS. For easy retrieval and follow-up work, reusable

346 G. Zurita and N. Baloian

Gestures

Meeting
life-cycle

Review agenda

Creation of
agenda

Voting

Pre-meeting Between-meetingsPost-meetingMeeting

Start of
meeting

Development
of meeting

End of
meeting

Group work
space

Individual work
space Concept

Maps

Creation of
minutes

Individual
note-making

collaborative
work

Record of
commitments

Meeting
summary

Follow-up on
commitments

Actions to be
taken

Negotiation
support

Discussion of
meeting items

Distribute
notes

Review
meeting

Communicate
following stages

Notify agenda Agree agenda

Describe
items

Time

Fig. 1. Support provided by HEMS prototype at the various stages of the system

materials are stored with the semantic structure. Seen from the users’ perspective, the
final goal would be to reduce all necessary interaction with the Handheld to the
moderating gestures and documentary writing on the screen

Features such as agenda creation, note-making, commitment assignment, and sup-
port for voting are implemented using concept maps that allow a hierarchical nesting
of any individual or group issue to be dealt with. Kristoffersen and Ljungberg [27]
show that viewing graphic elements and using concept maps on which users arrive at
an agreement as to their meaning through explanations help people establish effective
social interaction for dealing with any given issue.

The nesting incorporated in concept maps ensures organization, ease of follow-up,
and flexibility of creation, modification and management while at the same time
avoiding changes in context due to the three-dimensional semantic graphs provided
by the maps. As an example, consider Figure 2, in which a person named Ann puts
(Figure 2a) forward three issues to be dealt with at a meeting: a new employee, a
future project and the budget. Once all the participants (John, Ann, Eva, Tom and
Max, as shown at the bottom of the handheld screens) are agreed on the “new em-
ployee” issue, one participant (Ann again) selects it using the “select item” gesture
and a new blank node appears that is dependant on the issue. If the participants are not
in agreement on the “budget”, the “delete item” gesture is used. In Figure 2.b, John
introduces two sub-issues (“how old” and “knowledge”), both of which are part of the
“new employee” concept.

To navigate the concept maps, a chosen issue is double-clicked (for example “new
employee”, Figure 2.a) and its sub-issues are displayed (in this case, “how old” and
“knowledge”, Figure 2.b). A double click outside of the selected issues will display
the screen shown in Figure 2.a. The gestures “previous” and “next” are used to navi-
gate through a screen or node related to a given concept. The structure of the issues to
be dealt with (the concept map) can be seen in Figure 2.c. For the voting process, the

 Handheld-Based Electronic Meeting Support 347

Gesturesa Gestures

select item

delete item

confirm

next

previous

Gestures Gesturesb c

Fig. 2. Screenshots of HEMS and the basic gestures

gestures “confirm” (agree) and “delete item” (disagree) may be used by each partici-
pant on a given issue.

The functionalities of the HEMS system (Figure 1) that facilitate the provision of
support and mediation for dealing with the phenomena discussed at the end of Section
2 are described in what follows.

− Agenda construction and follow-up. These functionalities include the ability to a)
facilitate the creation and description of agenda items individually (pre-meeting);
b) notify agenda and review it as a group (start of meeting); c) review agenda items
(start of meeting); d) agree upon the agenda based on the issues proposed by each
participant in shared and collaborative fashion, propose alternative issues to be
dealt with, and have a voting component for arriving at agreements (start of
meeting); e) provide support for meeting follow-up through the assignment and
management of estimated time periods for each issue [6], an important factor for
promoting effectiveness and productivity ([2]) by supplying elapsed time alerts and
progress indicators on matters being discussed at the meeting.

− Organization and coordination. The use of concept maps generates a natural
mental structure that ensures the participants remain focused on the issues to be
dealt with [6]. HEMS supplies a work area for each issue that is to be developed
individually or collaboratively [20]. It can be used by attendees to make hand-
written notes.
In the final stage of the meeting, the deep organization of the concept maps a) en-
ables the drafting of a meeting summary through the follow-up of the structure, and
b) facilitates the determination of actions to be taken. Additionally, in the post-
meeting stage this feature makes it possible to a) distribute each participant’s notes
as well as those made by the group as a whole, b) review notes and commitments at
a later time, and c) inform those involved regarding the stages to follow.
Given that the attendees’ notes were made during the processes of agreeing upon
an agenda, developing the issues discussed, taking votes, etc., the minutes of the
meeting will be saved by individual and group contribution for each attendee as
well as by issue dealt with, including a record of the times associated with each is-
sue. In this format, the minutes constitute a memory of the meeting so that the user

348 G. Zurita and N. Baloian

may consult them for information at any moment and maintain the links with the
corresponding issues discussed at other meetings.

− Negotiation. HEMS includes a voting tool to support negotiations and discussions,
allowing attendees to agree upon the issues to be placed on the agenda, those that
are to be dealt with at the actual meeting and/or the actions to be taken (see voting
component in Figure 1). The voting system may use any mode of agreement (una-
nimity, simple majority, two-thirds majority, etc.). Because it works through pen-
based gestures, the system provides the necessary flexibility for adapting to various
“mental scenarios” that may arise.

− Commitments. If an attendee must carry out a particular activity at some later
time, a note is made in the handhelds stating that the activity must be executed by a
certain deadline and by the person associated with the note. The system also en-
sures the necessary functionality for sharing this information, thus allowing the
commitment to be tracked by all participants.

In shared mode, the individual annotations of a given participant can be viewed by
all in a single work area, and each of them may specify whether or not their notes are
to be private. Commitments and minutes can be accessed by various criteria such as
concept maps and issues contained in the agenda, time elapsed before dealing with a
given issue, or an issue’s position relative to a given participant’s note [20].

HEMS is entirely based on a peer-to-peer ad-hoc wireless network. Note that meet-
ings typically last 2 to 3 hours, which is less than the useful charge life of currently
used handheld batteries. Finally, the amount of information needed to be stored is
relatively small, so that the limits imposed by handhelds’ reduced memory size do not
constitute a problem.

6 Conclusions

The use of handhelds would appear to be an interesting option for coordinating meet-
ings that can be held at any time and in any place due to the devices’ ability to make
notes and share small items of information, their ease of deployment in any collabora-
tion scenario and their ad-hoc communication support. Handhelds are also a good
choice in that they allow brief, spontaneous notes to be expanded later into fuller
contributions. In cases where large amounts of data must be inputted, solutions in-
volving keyboards or other high volume input devices are required and handhelds
would be less applicable.

However, even in situations where handhelds are appropriate, their reduced screen
size constitutes a challenge when designing human-handheld and handheld-mediated
human-human interactions. The system proposed in this paper, founded on two prin-
ciples aimed at improving these two classes of interactions, implements functional-
ities that help overcome what are recognized in the literature as the most frequent
problems with meetings. The first principle is the use of an interface that is based
wherever possible on an interaction with gestures so that widgets occupying scarce
screen space are not needed. The second principle is the application of a simple struc-
ture to the notes made by meeting participants. This simplifies the communication of
ideas, and thanks to the tridimensionality of the structure when expanded, each node
iteratively increases the depth of the screen. The structure must be kept simple to

 Handheld-Based Electronic Meeting Support 349

ensure it can be easily retained by the mind, a condition that is fulfilled by a hierar-
chical structure. In view of the foregoing, we believe that the tool presented here can
be an effective support for spontaneous face-to-face meetings, a hypothesis we hope
to confirm in experiments planned for the near future.

Acknowledgments. This paper was partially funded by Fondecyt 1050601 and DI -
Universidad de Chile Nro. I2 04/01-2. Special thanks to Lorena Quezada and Javier
Martinez.

References

1. Allen, T.: Organizational Structure for Product Development. Sloan School of Management,
MIT: Cambridge (2000) 1-24

2. Tropman, J.E.: Effective meetings: Improving Group Decision Making. Sage Publications
(1996)

3. Matson, E.: The Seven Signs of Deadly Meetings. Fast Company. 2. April/May (1996) 122
4. Mosvick, R., Nelson, R.: We've Got to Start Meeting Like This! A Guide to Successful Business

Meeting Management. Glenview, IL: Scott, Foresman, (1992)
5. Cranes, W. T.: Effective Meetings for Busy People: Let's Decide It and Go Home. New York:

McGraw-Hill Inc. (1980)
6. Hayne, S.: The facilitators’ perspective on meetings and implications for group support System.

Database, 30(4) (1999) 72-91.
7. Drew, J.: The 3M Meeting management team. Mac. Graw Hill. (1994)
8. Jessup, L., Valacich, J.: Group Support Systems: A New Frontier. New York: MacMillan (1993)
9. Nunamaker, J.A., Dennis, A., Valacich J., Vogel, D., George, J.: Electronic Meeting Systems to

support group work. CACM 34(7) (1991) 40-61
10. Wiberg, M.: RoamWare: an integrated architecture for seamless interaction in between mobile

meetings. Conference on Supporting Group Work archive. Proceedings of the 2001 Interna-
tional ACM SIGGROUP (2001) 288-297

11. Bergqvist, J., Dahlberg, P., Kristoffersen, S., Ljungberg, F.: Moving out of the meeting room:
exploring support for mobile meetings. Proceedings of the Sixth European conference on Com-
puter supported cooperative work. Copenghagen, Denmark (1999) 81-98

12. Hutchins, E.: The Technology of Team Navigation. In Galegher, J., Kraut, R.E., Egido, C.
(eds.): Intellec tual Teamwork: Social and Technological Foundations of Cooperative Work.
Lawrence Earlbaum Associates, Hillsdale, NJ. (1990) 191-221

13. Marshall, C., Ruotolo, C.: Reading-in-the-Small: A Study of Reading on Small Form Factor
Devices. JCDL’02, Portland, Oregon, USA. (2002) 13-17

14. Luff, P., Heath, C.: Mobility in Collaboration. In Proceedings of Computer Supported Collabo-
rative Work, CSCW’98. ACM Press (1998) 305-314

15. Perry, M. O’hara, K., Sellen, A., Brown, B., Harper, R.: Dealing with mobility: understanding
access anytime, anywhere. ACM Transactions on Computer-Human Interaction (TOCHI), 4(8)
(2001) 323-347

16. Schmidt, A. Lauff, M., Beigl, M.: Handheld CSCW. Workshop on Handheld CSCW at CSCW
'98, 14 November, Seattle (1998)

17. Guerrero, L., Pino, J., Collazos, C., Inostroza, A., Ochoa, S. Mobile Support for Collaborative
Work. Proceedings of 10th International Workshop on Groupware, CRIWG 2004, LNCS 3198,
Springer Verlag, San Carlos, Costa Rica, September (2004) 363-375

350 G. Zurita and N. Baloian

18. Bostrom, R., Anson, R., Clawson, V.: Group Facilitation and Group Support Systems. In Group
Support Systems: A New Frontier. Jessup, L. Valacich, J., (Eds.) (1993) 146-168

19. Streitz, N., Geißler, J., Haake, J., Hol, J.: DOLPHIN: Integrated Meeting Support across Local
and Remote Desktop Environments and LiveBoards in Proceedings of the 1994 ACM confer-
ence on Computer supported cooperative work, CSCW'94, ACM (1994) 345-358

20. Wolf, C., Rhyne, J.: Communication and Information Retrieval with a Pen-Based Meeting Sup-
port tool. CSCW Proceedings. ACM (1992) 322-329

21. Myers, B.A., Stiel, H., Gargiulo, R.: Collaboration using multiple PDAs connected to a PC.
Proceedings of the ACM, Conference on Computer Supported Cooperative Work. (Seattle, WA)
(1998) 285-294

22. Costa, C., Antunes, P., Dias, J.: The Meeting Report Process: Bridging EMS with PDA. Third
International Conference on Enterprise Information Systems, ICEIS 2001. Setubal, Portugal.
(2001) 821-826

23. Antunes, P., Acosta, C.: Handheld CSCW in the Meeting Environment., CRIWG 2002, LNCS
2440 (2002) 47-60

24. Hoppe, U., Gaßner K.: Integrating Collaborative Concept Mapping Tools with Group Memory
and Retrieval Functions. Proceedings of the Computer Support for Collaborative Learning
(CSCL) 2002 Conference (2002) 716-725

25. Long, A., Landay J., Rowe L., Michiels, J.: Visual similarity of pen Gestures. In: Proc. of the
Human Factors in Computing Systems SIGCHI 2000 2(1) (2000) 360-367

26. Nicholson, M., Vickers, P.: Pen-Based Gestures: An Approach to Reducing Screen Clutter in
Mobile Computing. In Proceedings of Mobile HCI 2004 (2004) 320-324

27. Kristoffersen, S., Ljungberg, F.: An Empirical Study of How People Establish Interaction: Im-
plications for CSCW Sessions Management Models. Proceedings CHI 99 Conference on Hu-
man Factors in Computing Systems Pittsburg (1999) 1-8

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 351 – 358, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Sharing Information Resources in Mobile
Ad-hoc Networks

Andrés Neyem, Sergio F. Ochoa, José A. Pino,
and Luis A. Guerrero

Department of Computer Science, Universidad de Chile
Blanco Encalada 2120, Santiago, Chile

{aneyem, sochoa, jpino, luguerre}@dcc.uchile.cl

Abstract. Many people are sharing digital resources through networks in order
to facilitate, enhance or improve collaborative work. Information sharing is not
only important to support collaborative work but it also represents the basis for
design and implementation of solutions for typical design aspects of groupware
applications, such as: floor control, group memory, shared objects replication
and sessions and users management. Advances in mobile technology have
extended the sharing information scenarios to Mobile Ad-hoc Networks
(MANETs), which has brought new challenges. This paper presents a simple
service platform to share information resources among members of a MANET-
supported groupware session. People interact using notebooks and PDAs. In
addition, a shared presentation tool which has been developed using the
services of the platform is described. This presentation tool can be used to assist
other collaborative activities, such as: technical presentations, casual
interactions, meetings for decision making and software technical reviews.

1 Introduction

Gartner's report estimated that PDA revenues in 2004 reached a record $4.3 billion for
a 16.7 percent increase, compared to 2003 figures [2]. IDC estimate that 13 million
handheld devices are sold each year and the estimation for 2005 is 71 million units to
be sold [8]. Advances in mobile technology and the price reduction of computing
mobile devices have prompted the spread of this technology to many scenarios, such
as: schools, hospitals, police, government and business. However, handheld machines
are not massively used to assist group work yet; their main use still is to support
personal activities.

These devices incorporate communication capabilities - usually based on Wi-Fi -
which allow them to interact with each other using wireless (one hop) and mobile
(multihop) networks [17]. Therefore, any physical scenario providing these
communication services to people on the move becomes a potential collaboration
arena. Examples of these scenarios are: shopping malls, offices, universities, hotels
and airports. Software reviews, brainstorming sessions, shared presentations and
synchronous learning activities are some of the collaboration activities that could be
supported using these devices. However, supporting these collaboration activities in

352 A. Neyem et al.

mobile networks, also named MANETs (Mobile Ad-hoc NETworks) [17], involves
finding MANET-based data sharing solutions.

This paper presents a service platform that allows collaborators be grouped in ad-
hoc sessions and share information resources on MANETs, by using notebooks and
PDAs. That platform can also be considered as a basis to develop solutions to support
groupware design aspects, such as floor control, group memory, shared objects
replication and sessions and users management. Solutions found to support these
design aspects will depend on the MANETs information sharing strategy.

Next section describes the challenges to share information on MANETs. Section 3
presents related research work. Section 4 describes the service Platform for Ad-hoc
Sharing Information Resources (PASIR), a presentation tool which has been
developed using the services of the platform, and a discussion on PASIR strengths
and weaknesses. Finally, Section 5 presents the conclusions and future work.

2 Sharing Information in MANETs

For many years the CSCW and CSCL communities have used shared information as a
way to support or enhance collaboration among people [14, 15]. Shared information
has also being used to develop software solutions supporting design aspects of
groupware applications [4, 13]. The most common strategy to share information
among collaborators involves centralizing data and services. Many groupware
platforms were designed following this strategy [12], and they show good results in
distributed systems supported by stable wired and wireless networks. However, this
strategy is useless when collaborators are communicated through an unstable network
like a MANET [1, 5]. The network structure becomes highly dynamic since
collaborators move continuously, and each centralized resource represents a failure
point for collaborative solutions in term of ensuring the communication availability.
Hence, low availability of the shared data space jeopardizes the collaboration process.
Although sharing information on mobile systems is not a new challenge, most of the
proposals do not consider the use of handheld devices, such as PDAs, and unstable
communication services, which is a particular feature of MANETs. These
particularities bring new challenges for sharing information for collaboration.

PDAs typically constrain groupware applications mainly in terms of screen size,
processing power, memory capacity and networking services provided by the
operating systems. These services allow notebooks and PDAs be integrated in the
same workgroup scenario [5]. On the other hand, the signal instability and the tight
bandwidth in MANETs represent the main restrictions for the groupware
communication services design. Collaborative systems using such communication
services should exhibit high shared data availability to avoid jeopardizing the
collaborative process. These restraints also show the need for new solutions able to
keep high availability of shared information even in that unstable scenario.

3 Related Work

There are several research initiatives that are trying to provide good solutions to
support sharing information in peer-to-peer networks. Some of these related works are

 Sharing Information Resources in Mobile Ad-hoc Networks 353

tuple-based distributed systems derived from LINDA [3], such as: FT-LINDA, JINI,
PLinda, T-spaces, Lime and JavaSpaces [6, 11]. Although these implementations
allow sharing information in peer-to-peer networks, they use centralized components
to provide binding among components of the distributed system. Such centralized
components become critical failure points in unstable networks.

Another related project is the iClouds framework which offers spontaneous mobile
user interaction and file exchange in mobile ad-hoc networks [7]. This framework
does not require centralized components because it does a full replication of any
shared file, which is appropriate in MANET scenarios. However, it does not provide
support to exchange shared objects, just files. In addition, iClouds does not
distinguish among copies of a same shared file (e.g. master and slave copies) and does
not support distributed operations on those files either. Similarly, the Proem platform
provides support for shared files, but on Personal Area Networks [9].

Another interesting platform is XMIDDLE. It allows mobile hosts to share XML
documents across heterogeneous mobile hosts, permitting on-line and off-line access
to data [10]. However, these capabilities do not allow manipulating compound
documents (like MS-Office documents or Adobe Acrobat documents), which are used
by many people to support the collaboration activities.

Next section presents a software platform named PASIR (Platform for Ad-hoc
Sharing Information Resources), which was designed to share files and compound
documents using the functionality provided by the .NET framework. It allows users to
share information resources through a distributed data space.

4 PASIR

The proposed platform is implemented using C# programming language and reuses
the services provided by the .Net framework for object and file manipulation, and also
for networking. There are no centralized services or data in the platform. Every
component of PASIR is fully replicated in order to keep high availability of resources
even when a session member gets isolated. Although a groupware system supported
by PASIR is composed of three layers (Fig. 1), the proposed platform involves the
two lower layers.

Distributed Operations, Sessions
Management, Shared Resources

Management, Floor Control Management

Communication and Sharing Information
Resources

Ad-hoc
Groupware System

Layer 1: Data Communication
and Sharing

Layer 3: Groupware
 Applications Commercial

Applications

Layer 2: Coordination

Fig. 1. Architecture of a PASIR-supported Groupware System

354 A. Neyem et al.

Each layer carries out a specific function and it communicates with the adjacent
layers through a well-defined interface. The lower layer is in charge of providing all
the networking and data sharing services among the groupware applications. The
coordination layer uses the services of the lower layer to implement the typical
groupware services for collaborative applications. It coordinates distributed
operations and it generates a consistent vision of the group activities. The services
currently implemented in this layer correspond to the services required by the
prototype application used to test the platform. They include session and user
management, floor control and shared objects synchronization. Nevertheless, many
other services for groupware applications can be included in this layer.

Finally, services for data sharing provided by PASIR can be embedded in ad-hoc
collaborative applications and also in some commercial software products, such as
Microsoft Office, Adobe Acrobat and Photoshop. This particular functionality allows
some monolithic applications support collaborative activities. Thus, it is possible to
reuse all data-manipulation applications functionality if the data is based on COM
(Component Object Model) objects [16]. These applications represent the upper level
of the architecture. The current implementation of PASIR supports just on-demand
shared objects synchronization through services provided by the coordination layer.

4.1 Data Communication and Sharing Layer

The PASIR communication services are asynchronous and based on UDP over IP.
UDP does not guarantee packet delivery as TCP; however, it is suitable for mobile
environments because it is connectionless. In addition, it allows using IP multicast to
detect the presence of reachable hosts. Communication services provided by PASIR
can be used on any network platform able to use UDP over IP, such as Bluetooth,
IrDA and IEEE 802.11x. Consequently, PASIR can be used in stable and unstable
communication environments. These communication services are the same provided
by the .Net framework for both notebooks and PDAs. Yet, the semantics of the
messages was specifically designed to allow information sharing on MANETs.

People are able to share two types of resources using the communication services:
flat files and COM objects. Every shared resource has an XML descriptor specifying
its features and indicating whether the resource is a master or slave copy. These
shared resources are located in a folder that every user has for each opened session.
Some shared resources could be a collection of shared interrelated objects (e.g, a
MSWord document or a PowerPoint presentation can be considered a collection of
shared linked COM objects). Besides, the comments a user can include in that
collection are also shared objects that are part of the collection. These shared objects
can travel together or they can be filtered to decouple them for synchronization
purposes. The synchronization services are provided by the coordination layer.

4.2 Coordination Layer

The coordination layer is based on a fully replicated session manager. It locally
records information about users, sessions and shared resources (Fig. 2), and allows
users to interact with the shared objects through a visual interface (Fig. 3a and 3b).
Shared objects are grouped in sessions. Every session also groups users sharing

 Sharing Information Resources in Mobile Ad-hoc Networks 355

AdhocSessions
1

-SessionId: string
-Name: string
-Type: string

AdhocSession
-Name: string
-IPHost: string

AdhocUser

AdhocUserShareResources

-Name: string
-Description: string
-Size: long
-Type: string
-Atributes: string
-DateCreated: DateTime
-DateModified: DateTime

AdhocShareResource
1 1..*

0..*

1 0..*

1

0..*

Fig. 2. Structure of the PASIR Session Manager

 (a) (b)

Fig. 3. User Interface of the PASIR Session Manager

information resources with the remaining session members. Every user in the
MANET can be part of more than one session. Users showing interest to connect to
the MANET are registered by the AdhocSessions class (Fig. 2) and they become
available in the shared environment (Fig. 3a).

Once inside the environment, a user (AdhocUser class) can access a session in two
ways (Fig. 3b): (a) creating a session, in that case she is automatically inside; or (b)
requesting access to an existing session (AdhocSession class). When a user creates a
session the platform gives her a SessionId which is not visible to the rest of the
MANET members. The SessionId should be sent to the users that are invited to the
session. The invitation and the SessionId will be delivered using multicast.

Once a user has access to a session, a local shared folder of the session
(AdhocShareResource class) becomes visible to the rest of the session members (Fig.
3b). Thus, that user can synchronize her shared resources with the resources of a
specific partner or with the rest of the session members. The attributes of each shared
object are analyzed and compared in order to carry out the synchronization process.

356 A. Neyem et al.

However, the synchronization of files that are not composed of COM objects (e.g.,
plain text documents) is done using an XML descriptor of the files as support.

Remote shared resources can be downloaded or remotely accessed using the local
session manager. When a user leaves a session, the local shared resources are kept
available for the local user who can work asynchronously. The COM objects included
by the user in the local copy (e.g., comments on a MSWord document) can be
transferred to the master copy next time the user with the master copy and the user
with the comments are reconnected to the working session. Every working session is
potentially alive even if no users are currently connected and it gets available when
the first user gets in. A user can leave a working session for good indicating that
decision to the local session manager. A session is potentially alive while a registered
user exists (even if he is not connected).

4.3 Groupware Applications Layer

Several groupware applications can be developed using PASIR services. Even some
commercial products are able to interact with the platform using the services. As an
example, this section briefly describes the design of SPT (Shared Presentation Tool).
This tool makes shared PowerPoint documents accessible to several users in a session.
Such users are also able to link comments to this shared document. This process can
occur both when the document is being edited and when the presentation is being
delivered. Author and presenter use the regular MS PowerPoint product, whereas
reviewers connected to the same session use the commenter module to make
comments. Every comment is linked to a slide. Comments made by reviewers are
linked on-demand into the master copy of the PowerPoint document, that is the one
used by the presenter. The synchronization process can be done following four
strategies: one sender and one receiver, one sender and many receivers, many senders
and one receiver, and many senders and many receivers (whole synchronization).
Every comment can be a COM object or an attribute specified in the XML descriptor
depending on the .Net framework version being used (full or compact version). These
comments can be anonymous or not. Moreover, the same strategy can be used to
make comments or corrections to a paragraph of a shared MS Word document. This
tool can be useful to support collaborative activities such as software technical
reviews, paper presentations or meetings for decision making. This implementation
has the same user interface for notebooks and PDAs.

4.4 Discussion

The PASIR platform is easy to deploy in notebooks and PDAs communicated through
a MANET. It allows sharing the information resources and keeps a high availability
of both shared information resources and services. That functionality can be
considered a basis to develop solutions to support the groupware design aspects and
also collaboration among people. The PASIR current implementation supports
distributed asynchronous work because of the services currently available in the
coordination layer. Nevertheless, prototypes of synchronous coordination services are
under construction.

 Sharing Information Resources in Mobile Ad-hoc Networks 357

The relationship between PASIR and commercial frameworks and applications
allow developers reuse functionalities from these commercial products to support
collaborative activities or to create new groupware applications. Although this reuse
constrains groupware systems, usually it also represents a reduction in development
effort and an improvement on the product quality.

The main limitation of this proposal refers to the fact these advantages can be
obtained only by using the MS Windows family of operating systems. Furthermore,
the integration of PDAs and notebooks and the synchronization mechanisms also
depend on it, because most of them are provided by the .Net framework.

The proposed platform can also be used in stable (wireless or wired)
communication settings, using several computing devices and desktop PCs. The
platform functionality in that case is the same. However, the stability of the
communication services allows including the server in the network to ease and to
improve the efficiency of the information sharing process.

5 Conclusions and Future Work

A platform easing information resource sharing in MANETs using notebooks and
PDAs has been presented. The platform functionality can be considered a basis to
develop solutions to support the groupware design aspects and also collaboration
among people. Unlike other initiatives, the proposed platform takes advantage of the
relationship between .Net and COM frameworks [16] and well-known commercial
products in order to provide a scenario to assist collaborative activities.

The main advantage of PASIR is the relationship it has with commercial
frameworks and applications. It allows developers to reuse functionality available in
these frameworks and also in the applications. However, these advantages are only
available for the MS Windows family. It restricts the portability of the groupware
systems and programming languages that can be used to develop, extend or integrate
these systems. Although PASIR was designed for MANETs, it is also possible to use
it in stable communication settings including desktop PCs.

In order to complete the PASIR support for synchronous and asynchronous
information sharing, the authors are currently working on the implementation of new
coordination services that will allow synchronous sharing of the COM objects and
files. Future work includes embedding awareness components in monolithic
commercial applications, using add-in capabilities to improve the support for the
collaborative work. Moreover, the groupware services provided by the coordination
layer will be increased and improved. Finally, experimentation in real scenarios
should be carried out to evaluate the proposal and get feedback to improve it.

Acknowledgments

This work was partially supported by Fondecyt (Chile), grants Nº: 1030959 and
1040952 and by MECESUP (Chile) Project Nº: UCH0109.

358 A. Neyem et al.

References

1. Aldunate, R., Ochoa, S., Peña-Mora, F., Nussbaum, M. Robust Mobile Ad-hoc Space for
Collaboration to Support Disaster Relief Efforts Involving Critical Physical Infrastructure.
ASCE Journal of Computing in Civil Engineering. In press.

2. Gartner, Inc. Gartner Says Worldwide PDA Shipments Grew 7 Percent While Revenue
Increased 17 Percent in 2004. (2005). URL: www.gartner.com/press_releases/asset_
120374_11.html

3. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems 7(1), (1985), 80-112.

4. Guerrero, L., Fuller, D. A Pattern System for the Development of Collaborative
Applications. Information and Software Technology 43(7), (2001), 457-467.

5. Guerrero, L., Ochoa, S., Pino, J., Collazos, C. Favorable Cases for the Use of PDAs in
Collaborative Work. Accepted for special issue of Group Decision and Negotiation (2005).

6. Handorean, R., Payton, J., Julien, C., Roman, G. Coordination Middleware Supporting
Rapid Deployment of Ad Hoc Mobile Systems. Proc. MCM’03, USA, (2003), 363-368.

7. Heinemann, A., Kangasharju, J., Lyardet, F., Mühlhäuser, M. iClouds - Peer-to-Peer
Information Sharing in Mobile Environments. Lecture Notes in Computer Science 2790
(2003), 1038-1045.

8. IDC. IDC Remains Optimistic About Handheld Devices, Forecasts 71 Million Shipments
by 2005. (20 June 2001). URL: http://www.idc.com

9. Kortuem, G. Schneider, J., Preuitt, D., Thompson, T., Fickas, S., Segall, Z. When Peer-to-
Peer Comes Face-to-Face: Collaborative Peer-to-Peer Computing in Mobile Ad-hoc
Networks. Proc. P2P’01, Sweden, (2001), 75-93.

10. Mascolo, C., Capra, L., Zachariadis, S., Emmerich, W. XMIDDLE: A Data-Sharing
Middleware for Mobile Computing. Journal on Personal and Wireless Communications
21(1), (2002), 77-103.

11. Nemlekar, M.: Scalable Distributed Tuplespaces. MSc. Thesis. Department of Electrical
and Computer Engineering, North Carolina State University, Chapter 5. 2001.

12. Ochoa, S. Guerrero, L, Pino, J., Collazos, C. Reusing Groupware Components. Lecture
Notes in Computer Science 3198 (2004), 262-270.

13. Schuckmann, C., Schiimmer, J., Seitz, P. Modeling Collaboration using Shared Objects.
Proc. GROUP’99, ACM Press, USA, (1999), 189-198.

14. Siirtola, H., Heimonen, T. Scalable Support for Work Groups and Groupwork. Proc.
MobileHCI’01, Dunlop and Brewster (Eds.), France, (2001), 129-134.

15. Talja, S., Hansen, P. Information Sharing. In: New Directions in Human Information
Behavior. Ed. A. Spink & C. Cole. Dordrecht: Kluwer. (2005).

16. Templeman, J., Mueller, J. COM Programming with Microsoft .Net. Microsoft Press,
Redmond, Washington. (2003).

17. Tschudin, C., Lundgren, H., Nordström, E. Embedding MANETs in the Real World. Proc.
PWC’03, Italy, (2003), 578-589.

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 359 – 366, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards a Model of Cooperation

Adriana S. Vivacqua1,3, Jean-Paul Barthès3, and Jano Moreira de Souza1,2

1 COPPE/UFRJ, Graduate School of Computer Science
2 DCC/IM, Institute of Mathematics, Federal University of Rio de Janeiro,

Rio de Janeiro, Brazil
3

UTC, Université Technologie de Compiègne, Compiègne, France
avivacqua@cos.ufrj.br, barthes@utc.fr, jano@cos.ufrj.br

Abstract. Researchers from several different domains have conducted studies
about cooperation, and a wealth of different models and theories have been
generated as a result. In this paper we describe an initial version of an integra-
tive model for the initiation of cooperation, with the theoretical background
from which it was created. Our main goals were to gain a better understanding,
organize and structure the most important aspects and recurrent themes that
show up in cooperative behavior research, adapting them when necessary. We
are especially interested in the initiation of cooperation, and in the determina-
tion of factors that lead to the establishment of cooperative endeavors with the
final goal of understanding what affects and how to encourage cooperation. A
model such as this could be applied to groupware tools to increase the levels of
cooperation between users.

1 Introduction

Rapidly evolving environments and frequent political, economical and technological
changes have led to changes in working environments [5]. Work now often involves
experts from different domains and is often remote, as evidence by an increase in
adoption of virtual work teams [10]. The constitution of working groups allows indi-
viduals to pool their expertise, enabling the group to jointly tackle problems.

Having others with whom to discuss alternatives and provide feedback or insight
into the problem often proves valuable, as new ideas and possibilities spring from
these interactions. Complex problems greatly benefit from diverse opinions and points
of view [18] [19]. Groupware systems seek to support these groups of individuals in
their joint activities, facilitating knowledge and information exchange and archival,
competence management and awareness of collaborators [5] [22].

Cooperation, however, has its costs: group work usually entails secondary activi-
ties to ensure appropriate communication and information exchange, which involve
coordinating, controlling and mediating relationships and articulating interdependent
activities [22]. Team distribution can make this articulation process harder and even-
tually decrease levels of cooperation [14].

During our studies of computer support for spontaneous interactions, we felt the
need to better understand the process of establishing cooperation and what factors

360 A.S. Vivacqua, J.-P. Barthès, and J.M. de Souza

contributed to or detracted from it. Researchers from such different domains as man-
agement, social psychology, economics and computer science have studied influences
on cooperative behavior, and we have attempted to integrate the most important con-
cepts and theories found in literature into a single model [4]. We are concerned with
the engagement phase, that is, the moment when actors see the opportunity for inter-
action and decide to act on it.

With this model, we attempt to uncover the decision-making strategy employed by
individuals when deciding whether to initiate cooperation. The point is to tease out
from existing theories the elements that might influence the decision to (a) initiate an
interaction with a cooperative intent or to (b) respond to this interaction, engaging in
cooperation. We integrate these elements into a model that maps the influence of the
elements on the final decision (whether positive or negative). To that end, we have
reviewed a number of theories and studies, and tried to integrate them, taking the
most frequently mentioned elements and linking them together.

The purpose of such a model is twofold: (1) to provide a better understanding of
individual reasoning and how it affects group work and, (2) when used in conjunction
with groupware or recommendation systems, to enable better matchmaking and foster
cooperation. With this model, we expect to be able to construct systems to not only
support but also foster cooperation, to help distributed users establish productive
cooperative relationships. Our final goal is to instrument applications in such a way as
to induce and enable cooperation, facilitating group formation.

The remainder of this paper is organized as follows: the next section provides a
brief overview of the background literature reviewed. In Section 3, we present the
model and its main elements. Section 4 finalizes with a discussion of how this model
can be applied and directions for future work.

2 Theoretical Sources

We started our search for a feasible model by reviewing a number of sources that deal
with influences on cooperation or participation in groups. Much literature is based on
game theoretic analysis, which plays a central role in the work of economists, soci-
ologists and psychologists.

Game theory is the formal study of conflict and cooperation and its concepts apply
whenever the actions of a group of agents are interdependent [24]. Game theorists
study cooperative behavior through social dilemmas, or situations where individually
reasonable behavior leads to a less than optimal situation for the group [12]. Re-
searchers use social dilemmas to study cooperation between members of a group,
strategy adoption and the effects of changes in certain elements of the games (such as
repetition or identifiability) on strategy adoption [1]. One of the shortcomings of game
theory is that it seeks to rationally explain actions that are sometimes performed irra-
tionally. Thus, game players are poor approximations of real people, who have limited
rationality and perception, and are influenced by habit, instinct and custom [23].

It is unlikely that a “game person” will be a perfect match to a real person. To try
to address this problem, we also reviewed studies from psychology and sociology,
which could provide further insight into aspects that hold for real people. Experimen-
tation-based social psychological studies provide models such as VIST (Valence,

 Towards a Model of Cooperation 361

Instrumentality, Self Efficacy, Trust), that maps factors that influence participation in
virtual work teams [10] and the Collective Effort Model, that maps reasons for social
loafing (non-cooperation) [3] [13].

Research has also acknowledged that different types of tasks lead to different par-
ticipatory behavior in groups [13] [17] (for instance, in additive tasks, such as tug of
war, people tend to exert less effort when they are working in a group), but task and
resource related elements (e.g. time, availability) were left out of for the time being.
At this stage, we are focusing on factors relating to the individuals, as these play an
important part when engaging in cooperation. These are also frequently mentioned as
influencing recommendation systems, which is part of our research focus.

It is important to note that most of the theories presented do not deal exactly with
the initiation of cooperation, but with participation in work teams, occurrence of so-
cial loafing in groups or volunteerism such as found in open source projects. As we
are interested in factors that lead to the establishment of cooperative relationships,
some of the concepts and ideas have been adapted to that effect.

3 An Integrative Model of Cooperation

Intentional cooperation usually implies overlap, which provides reasons to interact or
cooperate. These commonalities may involve the problem itself, tasks, objects, inter-
ests or knowledge. Different levels of overlap may exist, such as one person perform-
ing a task that helps towards solving another person’s problem or possessing knowl-
edge that someone else needs. These similarities provide the informational context
within which cooperation is to take place.

Our object of study is the engagement phase (the phase in which parties decide
whether or not to engage in collaboration), contextualized by current individual work.
Consider the following scenario: given two individuals, A and B, with similar prob-
lems, tasks or interests, and a system that provides them with information about this
similarity (which may be a mutual friend who makes an introduction), what factors
will influence the decision to (1) propose cooperation and (2) accept this proposal?

In this scenario we consider two roles: the initiator, who proposes cooperation and
the responder, who receives the proposal and must decide whether or not to cooper-
ate. There are, therefore, two situations: the initiator (A) has a problem to solve or a
task to accomplish, and a choice to contact the responder or not regarding this prob-
lem; or the responder (B) has received a proposal from the initiator and must decide
whether or not to cooperate. Factors influencing these two decisions are similar but
not exactly the same.

Methods to detect similarities are also under study, but will not be discussed here,
as a large body of research exists on recommendation systems and methods [16]. We
assume similarities have already been detected and concentrate on the cooperation
part of the equation. As mentioned before, this model is not exhaustive, as it doesn’t
include task [17] or resource related aspects, some of which may also be negotiated
by the parties. These will be added as we refine and expand the model.

3.1 Individual Perception

As we are dealing with individual decisions, all factors relate to the individual’s per-
ception of the world. The model for the Responder is shown in Fig. 1, and the model

362 A.S. Vivacqua, J.-P. Barthès, and J.M. de Souza

for the Initiator is shown in Fig. 2. The propensity for collaboration is shown at the
center of the model. The factors represent how each person sees (a) the task or prob-
lem being undertaken or being proposed (top boxes); (b) him or herself (bottom
boxes); (c) the person with whom he or she might collaborate (boxes on the right side)
and (d) the interaction that is proposed (boxes on the left side). Plus an minus sign
indicate whether the element’s influence is positive or negative.

Fig. 1. Model of Cooperation for the Responder

An individual’s natural inclination towards collaborative or competitive behavior
can be changed according to the situation, and factors such as the achievement of
status, affection or behavioral confirmation affect the individual’s natural tendency to
cooperate. Individuals decide to cooperate based on the long-term benefits they ex-
pect to obtain and the outcomes of the cooperation [7] [8]. Possible gains and losses
are weighed by their likelihood [10] [13]. Some examples of possible gains are divid-
ing the work, interacting with someone interesting or learning something new, and
costs may involve time and effort, for instance.

Task. Valence is the degree of identification with the goal or task at hand. Motivation
is directly proportional with goal or task valence [7] [10] [10] [13].

Challenge: challenging goals and complex tasks lead to increased participation [3]
[13] [15]. The initiator may more readily perceive a need to call upon others when
faced with a challenging task and the responder may enjoy the challenge or recognize
the challenge at hand, and that it would be infeasible to undertake it alone.

Other. Identification with other: identification is an important factor for cooperation,
and may lead to a sense of loyalty, commitment or camaraderie, greater effort and less
loafing [3] [10] [13]. These effects are the result of recognition of interdependencies
between individuals and the expectation of reciprocity [12]. It has a positive effect on
a responder, when he or she identifies with the initiator’s situation (such as having
faced the same problem or understanding the complexity of the tasks involved).

Reputation: reputation is based on three elements: identity, history and networks,
all of which have been shown to have positive effects on cooperation levels. Being
able to identify the partner leads to increased accountability and therefore to higher
levels of cooperation[1]. Anonymity leads to an increased possibility of free-riding,
since each individual’s actions cannot be identified [12]. Having information about

 Towards a Model of Cooperation 363

the partner’s past behavior (history) can help determine whether this partner is trust-
worthy and if cooperation is desirable. When identity and history of interactions are
distributed through a network or group, they can lead to the establishment of reputa-
tions, which can be used as a source of social information and control, as it generally
matters to people what others say about them [1] [10].

Trust: interpersonal trust plays an important role in the establishment of coopera-
tive relationships [7] both for initiator and for responders. It is the expectation that
one’s efforts will be reciprocated [10] and is influenced by interaction history, com-
munication [10] and pre-existing relationships [21]. Reputations and intermediaries
from a network can also help establish trust in relations [7] [13].

Expectations of other: if an individual believes the other to be incompetent or un-
able, he or she will be less likely to want to work with them [13]. Also, if an individ-
ual is expected not to perform the assigned tasks (considered untrustworthy), it is
unlikely that there will be an initiation of contact or a response to it. These expecta-
tions are affected by the individuals’ reputations.

Self. Instrumentality is the perceived importance or indispensability of one’s contribu-
tions for the group outcome: the more noticeable the effect of a contribution on the
outcome, the more inclined to cooperate the individual will be [1] [3] [10] [12] [13].
This impacts positively on the responder, as the individual will perceive his contribu-
tion as important to the joint venture.

Self-Efficacy: an individual’s perceived capability of performing the required ac-
tivities can greatly impact his level of cooperation. If he perceives himself as unable
to accomplish his part, his motivation will be low [10] [10]. For the initiator, self-
efficacy has a negative effect, as he may believe in his ability to perform the task
alone. It has a positive effect on responders, as they perceive they can accomplish the
task proposed.

Reaction of others: expected reactions of significant others (friends and family
members) make a difference in one’s actions. The more positive the feedback and the
more valued the significant others, the higher the likelihood of cooperation [10].

Fig. 2. Model of Cooperation for the Initiator

Interaction. Repeated Interactions: the existence or expectation of continued interac-
tion leads to more cooperative strategies than when individuals meet only once or for
the last time [1]. Repeated interactions enable sanctions and rewards, as well as recip-
rocity and identification of individual’s actions [7]. Individuals will take into account

364 A.S. Vivacqua, J.-P. Barthès, and J.M. de Souza

probable future interactions when deciding whether or not to cooperate [8]. This
might influence respondents, who may be more inclined to cooperate if they perceive
that they will have to interact with this person again in the future.

Articulation: in a group, additional effort must go into secondary activities to con-
trol and mediate relationships and to articulate interdependent activities. The added
effort required communicating and coordinating actions affects cooperation nega-
tively, as individuals may find it difficult to organize the group or perceive too much
extraneous work to be necessary [5] [22]. Larger groups (Group Size) require greater
articulation effort. Reduced visibility and influence of each member’s actions and the
added difficulty of identification lead to lower participation in larger groups [1] [12]
[13]. System support may facilitate the articulation effort. The existence of a system
leads to the expectation that team processes will work reliably (System Trust). Well-
defined processes and technology can reduce the added complexity incurred due to
the necessity of articulation work [10].

4 Discussion: Possible Applications

Many recommendation systems have been constructed to bring users together. How-
ever, the majority of systems are concerned with how well the matching algorithm
works or how well levels of expertise are determined [16]. Many of these studies
focus on help-seeking behavior [9] [20], but few evaluate levels of and reasons for
engagement after recommendations are made. It seems that there is an underlying
assumption that once made, a recommendation will be followed. While this may be
the case in groups where all the individuals know each other or in companies where a
strong cooperative culture already exists, it may not be so in larger groups, or when
individuals do not know each other. The decision to engage in collaboration may
seem like a simple one (when parties are in close contact or know each other), but it
becomes more complicated in cases where there is no acquaintance or history of in-
teraction, as when recommendations are expanded through social networks (an ap-
proach frequently adopted by recommendation systems).

We wish to explore opportunities for cooperative learning, work division and in-
formation exchange [2] [6], and how and why these happen. Using a model for col-
laboration would enable a designer (or the system) to emphasize different elements to
achieve different results (for instance, providing information on a user’s history of
interaction with a common acquaintance or on a system to facilitate their interaction).

The model presented provides an integrated view of some of the elements that in-
fluence the decision to engage in cooperation with others. Even though an individual
may be aware that another is available, sometimes communication may not be started
due to a lack of confidence that the other party will be receptive. Using the aforemen-
tioned elements, a system could provide additional information that might motivate
the initiation of cooperation. In any case, by providing additional information, the
users will be able to make more informed decisions, whether to cooperate or not.

This is not a one-size fits-all model, and each user assigns different values to each
of the elements involved (e.g. how important is what someone else thinks?) These
preferences will strongly influence the final outcome of the decision making process.
This model is meant as a generic view, which can be adapted to each user through
explicit parameterization or inference from continued observation. With a stable and

 Towards a Model of Cooperation 365

expressive model to represent each user, one could conceivably calculate the likeli-
hood of engagement into cooperation and add this information to a recommendation
(e.g. A may be the topmost expert, but B is more likely to respond positively).

The model still needs to undergo appropriate validation, and experiments are being
designed to that effect. Furthermore, there are influential elements regarding the work
itself that need to be factored in, such as expected quantity and division of work, types
of tasks [17], individuals’ resources and availability and task interdependencies.

In distributed work, the existence of systems that provide the information neces-
sary to enable collaboration is important, as it may not be readily available. Knowing
what to communicate and to whom is a question we are trying to address. Models
help us understand what and why things happen and serve as a guidance to systems
development [4]. We hope that, with appropriate validation, this model can provide
some useful insight for group support and recommendation systems.

References

[1] Axelrod, R. The Evolution of Cooperation. Basic Books, New York (1984)
[2] Becks, A., Reichling, T. Wulf, V. Supporting Collaborative Learning by Matching

Human Actors. Proceedings of HICSS 03.IEEE (2002)
[3] Beenen, G., Ling, K., Wang, X., Chang, K., Frankowski, D., Resnick, P., Kraut, R. Us-

ing Social Psychology to Motivate Contributions to Online Communities. In Proceedings
of CSCW 04. Chicago, IL (2004)

[4] Briggs, R.O. On Theory-Driven Design of Collaboration Technology and Process. In
Proceedings of the 10th International Workshop Groupware, CRIWG 2004. San Carlos,
Costa Rica. Springer-Verlag GmbH (2004)

[5] Carstensen, P., Schmidt, K., Computer Supported Cooperative Work: New Challenges to
Systems Design. In Kenji Itoh (ed.). Handbook of Human Factors, Tokyo (1999)

[6] Constantino-Gonzáles, M., Suthers, D. Automated Coaching of Collaboration Based on
Workspace Analysis: Evaluation and Implications for Future Learning Environments.
Proceedings of HICSS 03. IEEE (2002)

[7] Diekmann, A., Lindenberg, S. Cooperation: Sociological Aspects. In International Ency-
clopedia of the Social and Behavioral Sciences (4). Oxford: Pergamon-Elsevier (2000)

[8] Glance, N., Huberman, B. Organizational Fluidity and Sustainable Cooperation. In Car-
ley, K. and Prietula, M. (eds.), Computational Organization Theory. Lawrence Erlbaum
Associates, Hillsdale, New Jersey (1994) 217-240

[9] Groth, K., Bowers, J. On Finding things Out: Situating Organizational Knowledge in
CSCW. Proceedings of ECSCW 01. Kluwer Academic Publishers (2001)

[10] Hertel, G., Geister, S., Konradt, U. Managing Virtual Teams: A review of current em-
pirical research. Human Resource Management Review 15. Elsevier (2005) 69-95

[11] Hertel, G. Niedner, S., Herrmann, S. Motivation in Open Source Projects: An Internet-
based Survey of Contributors to the Linux Kernel. Research Policy, Special Issue on
Open Source Development (2003)

[12] Kollock, P. Social Dilemmas: The Anatomy of Cooperation. Annual Review of Sociol-
ogy 24 (1998) 183-214

[13] Kraut, R.E. Applying Social Psychological Theory to the Problems of Group Work. In
Carroll, J. (ed.) Theories in Human Computer Interaction. Morgan Kaufmann, NY
(2002)

366 A.S. Vivacqua, J.-P. Barthès, and J.M. de Souza

[14] Kraut, R.E., Fussell, S.R., Brennan, S.E., Siegel, J. Understanding the Effects of Prox-
imity on Collaboration: Implications for Technologies to Support Remote Collaborative
Work. In Hinds, P., Kiesler, S. (eds.) Distributed Work. MIT Press, Cambridge, MA
(2002) 137-164

[15] Locke, E.A., Latham, G.P. Building a Practically Useful Theory of Goal Setting and Mo-
tivation: A 35-Year Odyssey. American Psychologist 57 (9) (2002) 705-717.

[16] McDonald, D. Supporting Nuance in Groupware Design: Moving from Naturalistic Ex-
pertise Location to Expertise Recommendation. University of California, Irvine. Ph.D.
Thesis (2000)

[17] McGrath, J. Groups: Interaction and Performance. Prentice Hall, Inglewood, NJ (1984)
[18] Nissani, M.: Ten Cheers for Interdisciplinarity: A Case for Interdisciplinary Knowledge

and Research. Social Science Journal, 34 (2) (1997) 201-216
[19] Paulus, P.B.: Groups, Teams and Creativity: The Creative Potential of Idea-Generating

Groups. Applied Psychology: An International Review, 49 (2) (2000) 237-262
[20] Pipek, V., Wulf, V. Pruning the Answer Garden: Knowledge Sharing in Maintenance

Engineering. Proceedings of ECSCW 03. Kluwer Academic Publishers (2003)
[21] Rocco, E. Trust Breaks Down in Electronic Contexts but Can Be Repaired by Some Ini-

tial Face-to-Face Contact. Proceedings of CHI 98. Los Angeles, CA. ACM Press (1998)
496-502

[22] Schmidt, K. and L. Bannon: “Taking CSCW Seriously. Supporting Articulation Work”
in Computer Supported Cooperative Work, Kluwer Academic Publishers (1992) 7-40.

[23] Shubik, M. 13th International Conference on Game Theory, quoted by Wired:
http://www.wired.com/news/business/0,1367,54131,00.html

[24] Turocy, T., von Stengel, B. Game Theory. CDAM Research Report LSE-CDAM-2001-
09. London School of Economics (2001)

H. Fuks, S. Lukosch, and A.C. Salgado (Eds.): CRIWG 2005, LNCS 3706, pp. 367 – 375, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards an Ontology for Context
Representation in Groupware

Vaninha Vieira, Patrícia Tedesco, and Ana Carolina Salgado

Center for Informatics, Federal University of Pernambuco, Brazil
C.P. 7851, Recife, PE, Brasil – CEP 50732-970
{vvs, pcart, acs}@cin.ufpe.br

Abstract. An important issue in groupware is how to improve interaction and
collaboration among participants. Through the analysis of the context a user is
in or the context that surrounds an interaction, groupware systems can provide
users with useful information in that situation. A relevant issue when using
context is how to represent context information. Ontologies constitute an
interesting method for representing context, since they enable information
sharing and reuse. They can also be used by existing inference machines to
reason about various contexts. In this paper we propose an ontology to formally
represent context in groupware systems. We also present an example where this
ontology is used by a logic-based reasoning mechanism for tool
recommendation based on the current context of group members. We believe
that this ontology could help to understand the role of context in collaboration
and thus make the development of context-aware groupware systems easier.

1 Introduction

Context is defined as any information used to characterize the situation of an entity
where an entity is a person, place, or object that is considered relevant to the
interaction between a user and an application [7]. Context-aware systems are those
able to understand the context of users and anticipate their needs, in terms of services
and/or information. Moreover, context can play an important role in the
communication and interaction between humans as well as between humans and
machine, since it diminishes ambiguity and conflicts, increases the expressiveness of
dialogues, makes applications more friendly, flexible and easy to use, and
consequently raises user’s satisfaction.

When people collaborate, it is essential that they perceive and understand things
that are happening or have happened in the context of their group which are relevant
for the accomplishment of their activities [14]. This concept is known as awareness in
Computer Supported Cooperative Work (CSCW). The lack of awareness can provoke
several problems, such as conflicts, duplicated or inconsistent work and unmotivated
participants.

The definition of awareness associates this knowledge with the context of the
group. However, these two different but related concepts are not yet well defined and

368 V. Vieira, P. Tedesco, and A.C. Salgado

explored by CSCW researchers. The use of the concept of context by groupware
systems is still an open issue. Some attempts in doing so are presented in [1, 5, 10,
12]. Through the analysis of the context a user is in or the context that surrounds an
interaction, a groupware system can provide the users with information that is
valuable in that situation.

An important issue in reasoning about context is the acquisition of relevant
information. Generic context models are of interest since many applications can
benefit from these. Most of the work done thus far [13], indicate that ontologies are a
very interesting approach to represent context. This is because they are a technique
that enables knowledge sharing between human and software agents, as well as
knowledge reuse between systems. Moreover, ontologies can be used by existing
inference machines to reason about various contexts.

This paper presents a formal context model based on ontologies using OWL (Web
Ontology Language [2]) that describes context information in order to support the use
of context in groupware systems. The idea is to identify which information presented
in groupware applications could be classified as context and which kinds of context
we should represent. Through this model it is possible to compose inference rules that
enable the identification of high-level implicit context from low-level explicit context.
To clarify matters, we present a scenario exemplifying how this ontology could be
used by logic-based reasoning mechanisms to recommend tools based on the current
context of group members.

This paper is organized as follows: Section 2 introduces some concepts related to
context and context representation; Section 3 discusses some related work; Section 4
describes our proposal and an example of its use; and Section 5 presents our
conclusions and future work.

2 Context and Context Representation

Context is a well established concept in everyday life. We commonly use the word
context to restrict the situation we are talking about. However, when we think about
context as a computational concept, things become a little less straightforward. First it
is necessary to define what exactly we mean by context, identifying the focus of the
context and the information needed to describe it. Next, we need to choose a
technique to represent the context. Then it is necessary to define ways to acquire and
process the context, reasoning over basic context information to generate high-level
complex context.

There are several attempts to define and use context for computational purposes
(e.g.[4, 7. 8]). In fact, with the advance of context-aware computing, there is an
increasing need for developing formal context models to facilitate context
representation, sharing and semantic interoperability of heterogeneous systems [15].

In human or service interactions, it is always desirable that each agent shares the
same interpretation of the exchanged data. Ontologies define common vocabularies
for information sharing in a domain including machine-interpretable definitions of
concepts and relations among them [11]. There are several reasons for developing
ontology-based context models [11, 15], namely: to share a common understanding of
the structure of information; to enable reuse of domain knowledge; to make domain

Towards an Ontology for Context Representation in Groupware 369

assumptions explicit; and to enable the use of existing inference engines to reason
about context.

The use of location context is well known and widely propagated in ubiquitous
computing applications [6]. However, there is an increasing interest in using context
in other application domains, such as groupware systems. In these systems the
concept of context is already present albeit associated to issues such as awareness
information and group memory [3]. This research trend is described in the next
section.

3 Related Work

There are some ontologies for context representation proposed in the literature such as
CONON (Context Ontology) [15] and CoBrA-Ont [6]. Similarly to our work both are
constructed using OWL. However these ontologies are used to model context in the
ubiquitous computing domain and consider only the concepts of location, time, people
and devices. They do not consider the organizational context as well as the context
related to group work and collaborative interactions.

There are some studies on how context can be modeled and managed in
collaborative applications 1, 3, 5, 9, 10, 12]. Brézillon et al. [5] consider three levels
of specificity for describing context in group work: individual, group and project
context. The conceptual framework proposed in [12] points out some contextual
elements present in groupware applications related to the group members, the group
itself, the scheduled and the completed tasks, the interaction that led to the concluded
tasks and the environment where the interaction took place. Kirsch-Pinheiro et al. [10]
propose a context-based awareness mechanism which filters the information delivered
to the user according to a context description. It takes into account concepts such as
group and role definition, activities and work process, and uses an object-oriented
representation. Alarcon et al. [1] propose a preliminary taxonomy for context in
groupware based on a survey of the work done in groupware. They define group
context in terms of three main components: people, task or project, and resources.

There is some consensus among researchers that context information for
groupware should include entities such as project, group, people, tasks and resources
as well as the whole situation that surrounds the interaction among members.
However, the modeling and use of context information to improve group work is still
an open issue. Our ontology considers concepts such as the physical context concept
(based on CONON and CoBrA) and the organizational context (similar to some
concepts defined in [1] and [10]). However we differ in the classification for context
information and we contribute with the use of the ontology for inference. The next
section describes our proposal and an example of its use.

4 A Context Ontology for Groupware

This section describes our first steps in the construction of an ontology for
representing context information in groupware systems. The ontology is constructed
using the Web Ontology Language (OWL) [2]. OWL is a semantic web language

370 V. Vieira, P. Tedesco, and A.C. Salgado

proposed by the W3C that enables the definition of domain ontologies and sharing of
domain vocabularies. A domain is formalized through the definition of classes,
properties and instances of these classes. To edit the ontology and axioms we used the
Protégé 3.11 and to implement the rules to reason about the context we used the Jeops2
inference machine. The following sections present the main concepts defined and an
example of their use.

4.1 Main Concepts

Figure 1 shows a subclass/superclass upper level view of the main concepts defined in
the context ontology. These concepts, their properties and the classification proposed
were constructed based on a survey of the concepts related to context and
collaboration found in the technical literature [1, 6, 10, 12, 15]. These concepts are
explained below.

Context: this is the main class for all the context elements. It is divided into three
subclasses: physical context, organizational context and interaction context.

PhysicalContext: contains information about the physical elements that characterize
the situation a user is in at a specific time. This indicates the whole environment that
surrounds the user, the physical and virtual space s/he is located and relations such as
proximity, distance, presence, and absence (LocationContext); the time when the
interaction occurs and information about the context of the time such as time zone
(TimeContext); the physical and electronic devices available, such as printers,
computers, microphones, webcams (DeviceContext) and physical conditions such as
temperature (ConditionContext).

OrganizationalContext: this concept represents the contextual information related to
the whole structure that identifies the user, the group s/he belongs to and the role s/he
is playing in the execution of a task which is part of a process in a specific project.
Thus, the ProjectContext contains elements that identify the context of the project that
is being carried out by the group members such as objectives and schedules. The
GroupContext represents information such as the objective, abilities and interests of
the group. The AgentContext contains elements related to the members of the group.
We consider that a group can be composed of human members (HumanAgentContext)
and also of software members (SoftwareAgentContext), which can act collaboratively
with other software or human agents, in an intelligent collaborative application.
Contextual information for the HumanAgentContext includes identification, interests,
abilities and availability. The SoftwareAgentContext has information such as
objective, intentions and utility function. The TaskContext concept represents
elements related to the context of the tasks (and subtasks) that are being or have been
executed including the task objective and deadline. The RoleContext refers to
contextual elements related to the roles that members of a group can play in the
execution of a task, identifying, for instance, if the user plays the role of coordinator.

1 http://protege.stanford.edu/
2 http://www.di.ufpe.br/~jeops/

Towards an Ontology for Context Representation in Groupware 371

Fig. 1. The Main Class Hierarchy Partial View

InteractionContext: identifies the information related to the context of an interaction
that is happening (synchronous) or that has happened (asynchronous) during group
work. It is divided into two subclasses: SharedArtifactsContext and
ApplicationContext. The SharedArtifactsContext contains elements related to the
context of the shared artifacts used in the interaction, such as class objects in a
collaborative class diagram or pieces of text in a collaborative text editor. The
ApplicationContext includes information related to the context of the application
being used or available to be used in the interaction, such as the purpose of the
application (for communication, coordination or awareness) and the type of
interaction it supports (synchronous/asynchronous).

According to the OWL specification, each concept has datatype properties, which
define its attributes, and object properties, which define its relationships to other
concepts. For example, as shown in Figure 2, the HumanAgentContext has datatype
properties such as hasName, isAvailable, hasVisualDisability, and object properties
such as isMemberOf (GroupContext), performsRole (RoleContext), isLocatedIn
(LocationContext), hasDeviceContext (DeviceContext) and executesTask
(TaskContext). For the sake of space we will not describe the properties of all classes
in this paper.

4.2 Context Inference

One of the main advantages of using a formal model, such as ontologies, to represent
context is that logical reasoning mechanisms can be used for checking context

372 V. Vieira, P. Tedesco, and A.C. Salgado

consistency and inferring new complex information from existing basic context. For
instance, the system could suggest to users participating in an interaction which
communication tool should be used for them to interact more easily and efficiently
with their peers.

To explain the use of context reasoning in the ontology proposed consider a
scenario where a context-aware groupware system can make recommendations based
on the current context of each member in the group or in an interaction. Suppose that
Mary, Joseph and Rose work together in tasks related to a project for a new module
on a computing course. The first two are the teachers and the latter is the module’s
teaching assistant. At some point, Rose needs to contact the teachers to discuss her
ideas about the module. Rose and Joseph are in their respective homes, while Mary is
at her office. Rose wishes to know which communication tool is better suited to
contact and interact with both professors, considering their current context.

Table 1 summarizes the current context of each human agent and shows that the
three of them are available and have the following hardware devices installed: a video

GroupContext

DeviceContext
hasDevice Instance* HardwareDevice

DeviceContext
hasDevice Instance* HardwareDevice

hasDeviceContext

hasParticipant

isMemberOf

InteractionContext
recommendedTool Instance* Tool

InteractionContext
recommendedTool Instance* Tool

TaskContext

executesTask

RoleContext

performsRole
LocationContext

isLocatedIn

HumanAgentContext
hasName String
isAvailable Boolean
hasVisualDisability Boolean

HumanAgentContext
hasName String
isAvailable Boolean
hasVisualDisability Boolean

Fig. 2. Partial View of the Properties of HumanAgentContext Concept

Table 1. Examples of Instances for the HumanAgentContext Class

Context Mary Joseph Rose
isAvailable True True True

hasVisualDisability False True False

hasAudioDisability False False False

hasDeviceContext VideoCard ∧ SoundCard ∧
Microphone ∧ Keyboard

VideoCard ∧ SoundCard
∧ Microphone ∧
Keyboard

VideoCard ∧ Webcam ∧
SoundCard ∧
Microphone ∧ Keyboard

isMemberOf ContextModuleGroup
IntegraGroup

ContextModuleGroup
IntelligentAgentsGroup

ContextModuleGroup

executesTask PrepareContextClasses
DefineModuleTopics

PrepareContextClasses
DefineModuleTopics

DefineModuleTopics

isLocatedIn Office Home Home

Towards an Ontology for Context Representation in Groupware 373

card, a sound card, a microphone and a keyboard. Rose also has a webcam, and
Joseph has some kind of visual disability. None of them have audio disability. They
belong to a common group (ContextModuleGroup), are involved in a same task
(DefineModuleTopics) and the three of them are located in different physical places.

Video conferencing, audio conferencing, chat and email are examples of
communication tools that peers can use to directly contact each other. These tools
have specific hardware device requirements to be used and offer different services
that could make the communication more or less effective for discussion purposes.
Considering these characteristics we have classified these tools from the most to the
least effective: Video conferencing as the most effective followed by audio
conferencing, chat, and email as the least effective. However, this order must not be
too rigid as the tool priority could change according to the agent context. For
example, if a user has a hearing disability s/he cannot use a tool that requires audio,
such as audio or video conferencing.

Table 2 shows some inference rules defined for the recommendation of
communication tools, taking into account the context of the human agents that wish to
establish the communication, based on the example above. The rules check the
context of each user for each tool and set new context information to the interaction
context, represented by the object property recommendedTool. The recommended tool
will be the first one (according to the sequential order in Table 2) that matches the
correspondent rule.

The rule for the video conferencing tool indicates that the HumanAgentContext of
the three involved people must indicate that they are available, have no hearing
disability and have microphone, sound card, video card and webcam as hardware
devices. The audio conferencing rule establishes that they must be available, have no
hearing disability and have microphone and sound card installed. The chat rule
indicates that they must be available, have no visual disability and must have at least a
keyboard. Lastly, the email rule indicates that only a keyboard device is necessary to
establish the communication but the user must have no visual impairment.

These rules are validated by an inference machine that will use them to answer
queries such as “which communication tool the users in the context described in
Table 1 should use to interact?”. According to the information provided in the
example the answer is an audio conferencing tool. A video conferencing tool cannot
be used because only one of the users in the interaction has a webcam, which is a
required device defined in its inference rule. Also email and chat are not appropriate
since one of the participants has visual disability.

Table 2. Inference rules defined for communication tools recommendation

Tool Inference Rule (for each HumanAgentContext h in InteractionContext i)
Video
Conferencing

isAvailable(h) ∧ ¬hasAudioDisability(h) ∧ hasDeviceContext(h, Microphone ∧
SoundCard ∧ VideoCard ∧ Webcam) recommendedTool(i, VideoConferencing)

Audio
Conferencing

isAvailable(h) ∧ ¬hasAudioDisability(h) ∧ hasDeviceContext(h,
Microphone ∧ SoundCard) recommendedTool(i, AudioConferencing)

Chat isAvailable(h) ∧ ¬hasVisualDisability(h) ∧ hasDeviceContext(h, Keyboard)
recommendedTool(i, Chat)

Email ¬hasVisualDisability(h) ∧ hasDeviceContext(h, Keyboard) recommendedTool(i,
Email)

374 V. Vieira, P. Tedesco, and A.C. Salgado

This is a small example of how the use of a context ontology could help improve
group work. It demonstrates how we can use different kinds of basic contextual
information (Physical, Interaction and Human) to produce new high level context
information. Other facts and predicates could be considered in the rule composition to
recommend the tool, such as the task the users are involved in, the mode of the
interaction (synchronous/ asynchronous), the place they are located or the users’
preferred tools. We can extend the tools recommendation to consider not only
communication tools, but coordination or collaborative editing tools. Another
promising use is the recommendation of expertise, helping users that have common
interests and complementary abilities to opportunistically be in touch and create, for
instance, communities of practice.

5 Conclusions and Further Work

This paper presents an ontology for context representation in groupware systems. The
context information is classified in three main categories: physical, organizational and
interaction context. The paper also presents an example of the use of this ontology for
context inference, recommending tools for communication among users based on the
current context of each user.

We expect that this ontology will be used by developers of groupware systems to
identify, model and represent context in their applications. The ontology could also be
used by intelligent software agents to manage and infer contextual information.
Inference rules based on the ontology can support collaborative interactions by
recommending resources to participants or filtering awareness information notifycation.

We are currently working on refining the concepts and their properties, as well as
on identifying scenarios where the ontology could be applied and the definition of
inference rules for context reasoning in these scenarios. In the near future, we plan to
implement a prototype of an intelligent groupware system that uses the context
ontology to recommend tools and expertise.

Ackowledgments. The authors would like to thank CNPq for their financial support.
The first author also thanks the UFBA for their support.

References

1. Alarcon, R. A., Guerrero, L. A., Pino, J. A. Groupware Components as Providers of
Contextual Information. In: CONTEXT'05, Paris, France (2005).

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L. "Web Ontology Language (OWL) Reference, W3C
Recommendation" (2004), Accessed in 03/2005.

3. Borges, M.R.S., Brézillon, P., Pino, J.A., Pomerol, J.Ch. "Bringing Context to CSCW". In:
Proc. of the 8th Int. Conference on Computer Supported Cooperative Work in Design,
Xiamen, P.R. China, v. II, International Academic Publishers, Beijing World Publishing
Corporation, IEEE Press (2004), pp. 161-166.

4. Brézillon, P. "Modeling and using context: Past, present and future". Rapport de
Recherche du LIP6, Université Paris 6, France, In: http://www.lip6.fr/reports/
lip6.2002.010.html (2002), Acessed in 03/2005.

Towards an Ontology for Context Representation in Groupware 375

5. Brézillon, P., Borges, M.R.S., Pino, J.A., Pomerol, J.Ch. "Context-Awareness in Group
Work: Three Case Studies". In: Proc. of the 2004 IFIP Int. Conf. on Decision Support
Systems, Prato, Italy (2004), pp. 115-124.

6. Chen, H., Finin, T. "An Ontology for a Context Aware Pervasive Computing
Environment". In: IJCAI Workshop on Ontologies and Distributed Systems, Acapulco,
MX (2003).

7. Dey, A. K., Abowd, G. D. "Towards a Better Understanding of Context and Context-
awareness". In: CHI 2000. Workshop on The What, Who, Where, When, Why and How of
Context-awareness, ACM, The Hague, The Netherlands (2000), pp. 1-6.

8. Dourish, P. "Seeking a Foundation for Context-Aware Computing", Human Computer
Interaction, v. 16, n. 2 (2001), pp. 229-241.

9. Gross, T., Prinz, W. "Awareness in Context: A Light-Weight Approach". In: Proc. of the
Eights European Conference on Computer-Supported Cooperative Work (ECSCW 2003),
Kluwer Academic Publishers, Dortrecht, NL (2003), pp. 295-314.

10. Kirsch-Pinheiro, M., Gensel, J., Martin, H. "Representing Context for an Adaptative
Awareness Mechanism". In: Proc. of the X International Workshop on Groupware
(CRIWG'2004), v. LNCS 3198, San Carlos, Costa Rica, Springer-Verlag (2004).

11. Noy, N.F., McGuiness, D.L. "Ontology Development 101: A Guide to Creating Your First
Ontology". In: http://www.ksl.stanford.edu/people/dlm/papers/ontology101/ontology101-
noy-mcguinness.html (2001), Accessed in 03/2005.

12. Rosa, M.G.P., Borges, M.R.S., Santoro, F.M. "A Conceptual Framework for Analyzing the
Use of Context in Groupware". In: Proc. of CRIWG'03, v. LNCS 2806, Springer-Verlag
Berlin, Heidelberg (2003), pp. 300-313.

13. Strang, T., Linnhoff-Popien, C. "A Context Modeling Survey". In: Workshop on
Advanced Context Modelling, Reasoning and Management, UbiComp2004, Nottingham,
England (2004).

14. Vieira, V., Mangan, M.A.S., Werner, C.M.L., Mattoso, M.L.Q. "Ariane: An Awareness
Mechanism for Shared Databases". In: Proc. of the X International Workshop on
Groupware (CRIWG'2004), v. LNCS 3198, San Carlos, Costa Rica, Springer-Verlag
(2004), pp. 92-104.

15. Wang, X. H., Zhang, D. Q., Gu, T., Pung, H. K. "Ontology Based Context Modeling and
Reasoning using OWL". In: Workshop Proceedings of the 2nd IEEE Conference on
Pervasive Computing and Communications (PerCom2004), Orlando, FL, USA (2004), pp.
18-22.

Author Index

Antunes, Pedro 168, 308
Avgeriou, Paris 49

Baloian, Nelson 341
Barsotini, Claudia 248
Barthès, Jean-Paul 359
Borges, Marcos R.S. 216
Bosquet, Fabien 121
Brézillon, Patrick 232
Bu, Jiajun 137

Capponi, Francisca 263
Carminatti, Naiana 216
Chang, Sheng-Ho 192
Chen, Chun 137
Collazos, Cesar 284

Dabholkar, Akshay 17
Dean, Douglas L. 325
Decouchant, Dominique 33
de Farias, Cléver R.G. 105
de Souza, Jano Moreira 359
de Vreede, Gert-Jan 325
Domingos, Henrique 89
Duarte, Sérgio 89

Eim, Kristin 292
Ellis, Clarence A. 184
Englert, Roman 153

Favela, Jesus 33
Ferreira Pires, Lúıs 105
Fruhling, Ann L. 325
Fuller, David A. 255

Gomes, José Orlando 216
Gonçalves, Carlos E. 105
Guerrero, Luis A. 284, 351
Guicking, Axel 49

Herrera, Oriel 255
Husby, Øyvind 292
Hwang, Gwan-Hwan 192

Jeffery, Clinton 17
Jiang, Bo 137

Kim, Kwanghoon 184
Kim, Yosep 17
Koneri, Pushpa G. 325

Lagos, Maŕıa Ester 263
Lee, Yung-Chuan 192
Lukosch, Stephan 73

Madariaga, Milko 284
Marquès, Joan Manuel 57
Martins, J. Legatheaux 89
Mart́ınez Enŕıquez, Ana Maŕıa 33
Mendoza, Sonia 33
Morán, Alberto L. 33
Mourão, Hernâni 168
Munkvold, Bjørn Erik 292

Navarro, Leandro 57
Neyem, Andrés 351
Nussbaum, Miguel 263

Ochoa, Sergio F. 284, 351

Paul, Jean-Claude 121
Pinkwart, Niels 145
Pino, José A. 284, 351
Pipek, Volkmar 153
Preguiça, Nuno 89

Ramires, João 308
Raposo, Alberto B. 121
Reis, Luciano P. 121
Resṕıcio, Ana 308
Rosatelli, Marta C. 105

Salgado, Ana Carolina 367
Santoro, Flávia Maria 232
Schümmer, Till 73
Slagter, Robert 73
Stahl, Gerry 1, 271

Tachtevrenidis, Kosta 17
Tandler, Peter 49
Tedesco, Patŕıcia 367
Tramontina, Gregório Baggio 208

378 Author Index

van Sinderen, Marten 105
Vieira, Vaninha 367
Vivacqua, Adriana S. 359

Wainer, Jacques 184, 208, 248
Wolcott, Peter 325
Won, Markus 153
Wulf, Volker 153

Xhafa, Fatos 271

Yang, Jianxv 137

Zemel, Alan 271
Zurita, Gustavo 341

	Frontmatter
	Opening Keynote
	Groups, Group Cognition and Groupware

	Groupware Development
	A Framework for Prototyping Collaborative Virtual Environments
	Adaptive Distribution Support for Co-authored Documents on the Web
	Agilo: A Highly Flexible Groupware Framework
	Autonomous and Self-sufficient Groups: Ad Hoc Collaborative Environments
	Empowering End-Users: A Pattern-Centered Groupware Development Process
	Integrating Synchronous and Asynchronous Interactions in Groupware Applications

	Collaborative Applications
	An Architectural Model for Component Groupware
	An Architecture for Collaborative Geomodeling
	Remote Control Point Motion Prediction in Internet-Based Real-Time Collaborative Graphics Editing Systems
	Synchronization Contexts as a Means to Support Collaborative Modeling
	Tailoring Infrastructures: Supporting Cooperative Work with Configurable Email Filters

	Workflow Management
	A Collaborative Framework for Unexpected Exception Handling
	A Workflow Mining Method Through Model Rewriting
	Design of an Object-Oriented Workflow Management System with Reusable and Fine-Grained Components
	Modeling the Behavior of Dispatching Rules in Workflow Systems: A Statistical Approach

	Knowledge Management
	Collective Knowledge Recall: Benefits and Drawbacks
	Developing Shared Context Within Group Stories
	Patterns of Collaboration and Non-collaboration Among Physicians
	Shared Knowledge: The Result of Negotiation in Non-hierarchical Environments

	Computer Supported Collaborative Learning
	A Mediation Model for Large Group Collaborative Teaching
	Analyzing the Organization of Collaborative Math Problem-Solving in Online Chats Using Statistics and Conversation Analysis
	Collaboration for Learning Language Skills

	Group Decision Support Systems
	Collaborative IS Decision-Making: Analyzing Decision Process Characteristics and Technology Support
	Software Requirements Negotiation Using the Software Quality Function Deployment
	The Design and Field Evaluation of a Repeatable Collaborative Software Code Inspection Process

	Mobile Collaborative Work
	Handheld-Based Electronic Meeting Support
	Sharing Information Resources in Mobile Ad-hoc Networks

	Work Modeling in CSCW
	Towards a Model of Cooperation
	Towards an Ontology for Context Representation in Groupware

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

